3D导板与机器人辅助腰椎皮质骨轨迹置钉技术研究进展
Advances in 3D Guide Plate and Robot-Assisted Lumbar Cortical Bone Trajectory Screw Placement Technique
摘要: 随着全球人口老龄化加剧,脊柱退行性疾病患者合并骨质疏松症的发病率逐年增高。腰椎皮质骨轨迹置钉技术是解决骨质疏松患者螺钉松动有效方式之一,皮质骨轨迹螺钉比传统的椎弓根螺钉具有更好的生物力学性能。然而由于皮质骨轨迹置钉点偏内和置钉方向外展头倾角度更大缺乏明确解剖置顶点会增加腰椎皮质骨轨迹置钉手术难度。近年来,3D打印技术与骨科机器人辅助置钉技术的应用在提高骨质疏松患者皮质骨轨迹置钉精准度、增加皮质骨接触层数及减少小关节突关节侵犯率等方面发挥重要作用。本研究回顾国内外文献,对两种辅助置钉技术对腰椎皮质骨轨迹置钉的研究进行综述,同时对两种技术有新的认识和思考。
Abstract: As the global population is aging, the incidence of combined osteoporosis in patients with degenerative spinal diseases is increasing every year. Lumbar cortical bone trajectory screw placement technique is one of the effective ways to address screw loosening in osteoporotic patients, and cortical bone trajectory screws have better biomechanical properties than conventional pedicle screws. However, the lack of a clear anatomical apex point increases the difficulty of lumbar cortical bone trajectory screwing due to the inward bias of the cortical bone trajectory screwing point and the greater adduction and cephalic tilt in the screwing direction. In recent years, the application of 3D printing technology and orthopaedic robot-assisted screw placement technology has been used to improve the accuracy of screw placement in cortical bone trajectories in osteoporosis patients, and it plays an important role in increasing the number of cortical bone contact layers and reducing the rate of small articular synovial joint invasion. This study reviews the national and international literature on two assisted nailing techniques for lumbar cortical bone trajectory placement and at the same time new insights and reflections on both technologies.
文章引用:阿卜力克木·买买提, 盛伟斌, 帕尔哈提·热西提. 3D导板与机器人辅助腰椎皮质骨轨迹置钉技术研究进展[J]. 临床医学进展, 2024, 14(3): 1349-1355. https://doi.org/10.12677/acm.2024.143850

1. 引言

随着全球人口老龄化加剧,脊柱退行性疾病患者合并骨质疏松症的发病率逐年增高 [1] 。我国50岁以上骨质疏松患病率达19.2%,骨质疏松人群已达9000万人 [2] 。需要手术治疗腰椎疾病合并骨质疏松症的患者在不断增加 [3] 。当前椎弓根螺钉后路内固定技术成为脊柱疾病患者的主要手术方式,但是由于合并骨质疏松患者骨小梁的结构不足,螺钉易发生松动,拔出力降低,移位等 [4] [5] [6] 。因此国内外学者为提高螺钉把持力在螺钉的外形设计到钉道固化进行诸多尝试,例如可扩张螺钉,涂有羟基磷灰石涂层的螺钉及骨水泥强化空心侧孔椎弓根螺钉等 [7] [8] [9] [10] [11] 。表面涂有羟基磷灰石涂层螺钉价格较高,难以普及。以及同种异体骨及骨水泥都存在一定的安全风险,例如骨水泥化学毒性,渗漏等严重时报道发生肺栓塞病例 [11] 。

2009年Santoni教授提出皮质骨轨迹(Cortical bone trajectory, CBT)技术,与传统椎弓根螺钉钉道相比其进针点选择为内下侧,钉道更偏外上方向,进针点为(椎板背侧皮质骨、椎弓根的内侧壁、椎弓根的外侧壁及椎体的前侧壁),其钉道在矢状面显示沿着椎弓根下缘头倾25~30˚,轴位图像显示外展10˚,增加30%轴向抗拉力,螺钉扭力1.7倍 [12] [13] 。同样Ueno与Matsukawa等人证实CBT螺钉抗拔出、螺钉植入扭矩、固定强度等生物力学性能方面对比传统椎弓根螺钉更具有优势 [14] [15] 。国内学者丁洪涛等人在一项124例腰椎疾病患者前瞻性研究中发现皮质骨轨迹螺钉固定技术是合并骨质疏松的腰椎疾病患者中较传统椎弓根螺钉内固定更优的选择 [16] 。张连鹏等人在一项生物力学研究中得出皮质骨轨迹置钉技术在腰椎翻修术中即使有钉道缺损,但轴向抗拔出力上较初始传统椎弓根螺钉固定上提高25.6%。除此之外还有些临床研究结果表明,对因退行性疾病接受后路腰椎融合术的患者,与常规手术相比接受CBT螺钉的患者疼痛、功能和残疾评分相似,但并发症更低 [17] [18] 。因此国内外学者认为腰椎皮质骨轨迹置钉技术在骨质疏松患者及腰椎翻修手术中成为潜在的选择 [19] [20] 。

然而传统徒手术CBT置钉技术难以确保理想置钉轨迹,由于缺乏明显的解剖标志点,徒手置钉时其进针点和进针方向难度较大 [21] ,进而导致皮质骨接触层数减少,较难确保CBT螺钉的理想固定强度 [22] [23] 。另外CBT置钉技术学习曲线较长,由于其进针点和进针角度对于椎体解剖及其毗邻关系,不正确地置入螺钉例如置钉点偏移、进入椎管,突破椎体可能损伤神经、血管及加速椎间盘退变 [24] [25] 。除此之外由于CBT螺钉置钉时切口及暴露视野较传统椎弓根螺钉置钉技术较小,需增加患者及术者透视暴露次数,徒手置入CBT螺钉的学习曲线比椎弓根螺钉较长,对于年轻脊柱外科医生带来挑战 [26] [27] 。因此这又对CBT置钉技术的普及受到了一定程度上的限制。

当前3D打印技术及机器人辅助下的外科手术应用越来越广泛,为提高脊柱外科手术的精准安全性提供了新的方法 [28] 。可辅助医生了解最佳进针点,选择适合置钉轨迹,为手术的顺利进行“保驾护航”。为患者提供精准个体化治疗,降低脊柱外科手术风险,提高手术精准性 [29] 。两种工具辅助下皮质骨轨迹置钉技术是对脊柱外科传统手术技术的有效补充,尤其是在脊柱骨质疏松患者初次及翻修手术中具有重要的价值和巨大的潜能。本研究通过回顾国内外相关研究对两种技术进行综述。

2. 3D打印导板辅助下皮质骨轨迹螺钉置钉

目前对于脊柱外科术式徒手置钉仍然是最常见的置入方式,然而对于选择脊柱畸形、上颈椎、脊柱肿瘤及皮质骨轨迹置钉由于难以确定置钉解剖标志,徒手置钉易造成脊髓血管等严重并发症。当前3D打印技术在骨科领域被广泛应用,3D打印技术也被称作“快速成型技术”其原理以术前患者CT扫描数据为基础,通过计算机三维建立模型,术前可通过个体化打印3D解剖模型,可进行精准、个体化的手术方案。借助3D打印解剖模型更精准的判断解剖结构,提高手术效率,减少术中出血及透视次数 [30] 。近年来通过3D打印技术的发展,其设计出的贴合于骨性表面个体化导板,可辅助术者置钉,可减少血管神经的损伤 [31] 。

石文杰等 [32] 通过4具标本实验研究3D导板辅助下CBT螺钉置钉精准度,所有标本中的螺钉放置均由尚未有腰椎皮质骨螺钉放置经验的术者进行操作,其置钉精准率为97.5%,证明了3D打印导航模板可以进一步提高皮质骨螺钉放置的准确性和安全性。随后该学者利用其改良的3D打印导板,将以峡部外侧缘、椎板和棘突作为解剖标志的导板附着在相应的椎体上。增加3D导板与骨性表面贴合的面积及术中导板的稳定性防止术中偏移,进一步增加及验证了3D导板辅助下皮质骨轨迹置钉简单、安全、准确性 [33] 。Salvatore Petrone等人在一项238例进行腰椎皮质骨轨迹置钉融合术对比研究显示,二者平均手术时间为124 min和142 min;置钉精准度分别为93.9%和90.5%,3D导板辅助下置钉较仅用术前三维CT规划轨迹手术时间和置钉精准度更有优势 [34] 。王希骥等在3D打印及导航技术辅助腰椎皮质骨轨迹螺钉置入治疗伴骨质疏松腰椎退行性变的准确性及疗效分析研究中显示,3D导板辅助与术中导航组的置钉准确率均优于徒手置钉组,且3D导板辅助皮质骨轨迹螺钉置钉与术中导航组在缩短平均住院日,术中出血量等方面较徒手置钉有一定的优势 [35] 。陈惠国等人 [36] 同样在一项3D导板辅助骨质疏松患者进行CBT螺钉腰椎后路融合内固定术研究中同样得出类似的结论。除此之外Kun He等人在一项邻节段退行性变(ASD)的翻修手术中采用3D导板辅助下的翻修手术,得出采用3D导板辅助CBT螺钉进行ASD翻修手术,具有手术时间短、切口小、出血量少等优点,临床效果令人满意的结论 [37] 。Perna等人通过个体化3D导板的使用CBT螺钉的平均直径和长度可以安全地增加,根据以往有关CBT生物力学特性的证据,这些优点可以使固定强度比传统的椎弓根螺钉增加 [38] 。笔者认为皮质骨轨迹螺钉在3D导板辅助置钉下通过安全精准延长螺钉尺寸可进一步增加其生物力学性能。为了提高骨质疏松患者脊柱后路内固定的强度,有学者提出了在椎弓根内同时置入传统椎弓根螺钉和皮质骨轨迹螺钉的方法 [39] 。但由于手术难度大临床应用较少,该方法的安全性和准确性仍不清楚。Zhao等人研究显示3D打印的双轨迹螺钉置入手术引导可以降低手术难度和术中透视的使用,使用3D导板辅助是一种安全、可行、准确的螺钉置入方法 [40] 。

3. 机器人辅助下CBT螺钉置钉

近年来,随着医学与其交叉学科的快速发展,脊柱微创技术也蓬勃兴起,包括脊柱内镜技术、显微镜技术、微创融合技术、计算机导航技术、虚拟现实/增强现实技术以及机器人等多种技术。使手术更倾向于智能化、微创化。机器人辅助手术可缩短手术时间,使得手术更加精准,同时减少脊柱外科术中复杂解剖下的并发症,这些技术在临床应用中得到广泛采用,几乎覆盖了脊柱疾病治疗的各个方面 [41] 。就机器人辅助脊柱手术而言,自2004年2D透视导航技术的SpineAssist机器人用于脊柱手术,再到2011年2D图像被3D图像所取代的升级Renaissance机器人辅助置钉精准比例为94.5%,但该机器人无法进行术中实时操作,手术过程较为繁琐,2016年Zimmer Biomet公司的ROSA Spine机器人通过FDA认证,该机器人可在术中实时跟踪患者脊柱上的固定靶点并进行呼吸补偿和空间定位,可适应患者的呼吸运动和位置变化 [42] 。Louis Chenin等人使用该机器人精确和安全地治疗退变性腰椎间盘疾病的融合术 [43] 。当前脊柱机器人国内主要为天玑骨科手术机器人、国外包括Globus Medical公司的ExcelsiusGPS机器人、Medtech公司的ROSASpine机器人和Mazor公司的Renaissance机器人 [44] 。

机器人辅助椎弓根螺钉植入已积累了大量临床经验,有文献报道机器人辅助椎弓根螺钉植入在使用Genzbein-Robbins分级系统的准确率在97%~99% [45] 。国内学者林书等人使用天玑骨科机器人使用Genzbein-Robbins分级系统评估CBT螺钉植入准确率为93%,验证了相比徒手CBT螺钉内固定,机器人辅助置钉具有精准度高,手术时间较少,术中透视次数减少等特点,在治疗伴有骨质疏松的腰椎退变性疾病中安全性良好 [46] 。然而由于CBT螺钉较传统椎弓根螺钉轨迹的特殊性,Ding等人 [25] 提出了针对CBT螺钉准确性分级的方案。利用该分级方法张希诺等人在使用天玑骨科机器人组使用CBT螺钉植入精准度显著高于徒手组,关节突关节侵犯发生率显著低于徒手组。由于小关节侵犯是后路腰椎融合术最常见的并发症之一,近年来受到越来越多的关注 [47] ,因关节突关节侵犯导致关节突关节侵犯,进而导致椎间盘的承重负荷加重等,进一步影响邻近节段病变的发生。徒手置钉可能会导致关节突关节及韧带的损伤,潜在的增加术后邻近节段退变(Adjacent Segment Disease, ASD)的发生率 [48] 。同样Le XF等人在皮质骨轨迹螺钉植入过程中上关节突关节损伤的发生率和危险因素分析中得出机器人辅助的方法可以减少关节突关节侵犯(facet joint violation, FJV)率的发生 [49] 。除此之外Rho K等人 [50] 报道了机器人引导的双皮质骨轨迹治疗ASD,避免了对更大后切口的需求,降低了感染、肌肉夹层的风险,并可能缩短住院时间。Wang C等人 [51] 报道了对真菌性椎间盘炎致椎间盘假性囊肿出现马尾综合征的患者进行内镜下神经减压结合机器人辅助下CBT螺钉与传统椎弓根螺钉植入进行双轨迹内固定,指出脊柱内镜结合机器人辅助技术可为真菌性椎间盘炎和伴随的后遗症提供替代解决方案。徐子航等人 [52] 表明机器人辅助下CBT螺钉内固定术治疗腰椎退行性疾病可确保螺钉与皮质之间充分接触。随着手术例数的增加其手术时间以及出血量逐渐减少。2023年宋继鹏等人 [53] 在对于短节段后路腰椎融合术中,发现接受机器人辅助下的皮质骨螺钉置入的患者比机器人辅助下椎弓根螺钉固定的患者在手术时间、切口长度、术中出血量、术后引流量以及术后平均住院日方面均具有显著优势。

4. 总结与展望

3D打印导板在CBT螺钉辅助置钉起到精准安全的作用,除此之外还可以通过3D打印用于脊柱外科定制假体以及“现成的”植入物,具有增强植入物性能个体化治疗等潜力。3D打印植入物的初步结果是有希望的,然而这些技术仍在发展中,存在一定局限性,例如3D打印导板对机器、材料要求较高,难以大规模在基层医院普及,个体化设计导致不能大批量生产,无法用于急诊手术。术中改变手术方案时也无法及时相应的改变,设计与椎体反向贴合面的导板时,需要腰椎椎板后部、棘突根部的骨性解剖结构完整或相对完整,这就限制了导板在腰椎已行椎板切除患者使用3D导板辅助CBT螺钉置钉。未来3D打印技术在脊柱外科中的应用仍是一个新的领域,在脊柱外科的研究、教育、手术规划、导航模板设计和3D打印植入物等领域尤其复杂脊柱疾病具有一定的应用价值,对于3D打印创新性及以往手术的远期疗效进一步的研究是有必要的。

机器人辅助下的脊柱外科手术也凸显出诸多的优势,具有精准安全、医患射线暴露少、手术创伤小、术中出血少等优点。但是由于机器人成本较大,手术费用昂贵等因素尚未在国内医院普遍推广,基于机器人辅助脊柱外科手术有较好的精准性和安全性,值得在临床进一步推广研究。

综上所述,不论是3D导板辅助皮质骨轨迹置钉技术还是脊柱外科机器人辅助下CBT螺钉技术,均有利弊。然而微创和精准是脊柱外科手术发展的必然趋势。除此之外,未来随着数字化技术的迅速发展及临床应用,人工智能(artificial intelligence, AI)技术也将为脊柱手术提供更多的选择,基于AI的术中辅助导航技术可进一步为各类脊柱手术保驾护航。

NOTES

*通讯作者。

参考文献

[1] Wolfert, A.J., Rompala, A., Beyer, G.A., et al. (2022) The Impact of Osteoporosis on Adverse Outcomes after Short Fusion for Degenerative Lumbar Disease. Journal of the American Academy of Orthopaedic Surgeons, 30, 573-579.
https://doi.org/10.5435/JAAOS-D-21-01258
[2] 袁玲丹, 宋利格. 《原发性骨质疏松症诊疗指南(2022版)》解读[J]. 同济大学学报(医学版), 2023, 44(6): 777-784.
[3] Försth, P., et al. (2016) A Randomized, Controlled Trial of Fusion Surgery for Lumbar Spinal Stenosis. New England Journal of Medicine, 374, 1413-1423.
https://doi.org/10.1056/NEJMoa1513721
[4] Rickert, M., Rauschmann, M., Fleege, C., Behrbalk, E. and Harms, J. (2015) Interbody Fusion Procedures. Development from a Historical Perspective. Orthopade, 44, 104-113.
https://doi.org/10.1007/s00132-015-3076-1
[5] Jacob, K.C., Patel, M.R., Ribot, M.A., et al. (2022) Single-Level TLIF versus LLIF at L4-5: A Comparison of Patient-Reported Outcomes and Recovery Ratios. Journal of the American Academy of Orthopaedic Surgeons, 30, E495-E505.
https://doi.org/10.5435/JAAOS-D-21-00772
[6] Hsu, W.L., Lin, Y.H., Chuang, H.Y., et al. (2020) Cortical Bone Trajectory Instrumentation with Vertebroplasty for Osteoporotic Thoracolumbar Compression Fracture. Medicina (Kaunas), 56, Article No. 82.
https://doi.org/10.3390/medicina56020082
[7] Chen, Y.L., Chen, W.C., Chou, C.W., et al. (2014) Biomechanical Study of Expandable Pedicle Screw Fixation in Severe Osteoporotic Bone Comparing with Conventional and Cement-Augmented Pedicle Screws. Medical Engineering & Physics, 36, 1416-1420.
https://doi.org/10.1016/j.medengphy.2014.05.003
[8] Wang, W.T., Guo, C.H., Duan, K., Ma, M.J., Jiang, Y., Liu, T.J., Liu, J.J. and Hao, D.J. (2019) Dual Pitch Titanium-Coated Pedicle Screws Improve Initial and Early Fixation in a Polyetheretherketone Rod Semi-Rigid Fixation System in Sheep. Chinese Medical Journal (England), 132, 2594-2600.
https://doi.org/10.1097/CM9.0000000000000335
[9] 刘丝雨, 王彩玲, 郑宇, 等. 钛螺纹钉表面镧羟基磷灰石复合涂层骨结合的实验研究[J]. 河北医科大学学报, 2017, 38(5): 575-578.
[10] Ohe, M., Moridaira, H., Inami, S., et al. (2018) Pedicle Screws with a Thin Hydroxyapatite Coating for Improving Fixation at the Bone-Implant Interface in the Osteoporotic Spine: Experimental Study in a Porcine Model. Journal of Neurosurgery: Spine, 28, 679-687.
https://doi.org/10.3171/2017.10.SPINE17702
[11] 陈华健, 陈德元, 黄福立, 等. 骨水泥强化空心侧孔椎弓根螺钉内固定术后骨水泥心肺栓塞1例报道[J]. 中国脊柱脊髓杂志, 2022, 32(8): 765-768.
[12] Santoni, B.G., Hynes, R.A., Mcgilvray, K.C., et al. (2009) Cortical Bone Trajectory for Lumbar Pedicle Screws. The Spine Journal, 9, 366-373.
https://doi.org/10.1016/j.spinee.2008.07.008
[13] Matsukawa, K., Yato, Y., Hynes, R.A., et al. (2017) Cortical Bone Trajectory for Thoracic Pedicle Screws: A Technical Note. Clinical Spine Surgery, 30, E497-E504.
https://doi.org/10.1097/BSD.0000000000000130
[14] Ueno, M., Sakai, R., Tannka, K., et al. (2015) Should We Use Cortical Bone Screws for Cortical Bone Trajectory? Journal of Neurosurgery: Spine, 22, 1-6.
https://doi.org/10.3171/2014.9.SPINE1484
[15] Matsukawa, K., Yato, Y., Imabayashi, H., et al. (2015) Biomechanical Evaluation of the Fixation Strength of Lumbar Pedicle Screws Using Cortical Bone Trajectory: A Finite Element Study. Journal of Neurosurgery: Spine, 23, 471-478.
https://doi.org/10.3171/2015.1.SPINE141103
[16] 丁红涛, 海涌, 刘玉增, 等. 皮质骨轨迹螺钉固定在合并骨质疏松腰椎退行性疾病手术中应用的效果[J]. 中国脊柱脊髓杂志, 2022, 32(12): 1058-1066.
[17] Phan, K., Hogan, J., Maharaj, M. and Mobbs, R.J. (2015) Cortical Bone Trajectory for Lumbar Pedicle Screw Placement: A Review of Published Reports. Orthopaedic Surgery, 7, 213-221.
https://doi.org/10.1111/os.12185
[18] Keorochana, G., Pairuchvej, S., Trathitephun, W., Arirachakaran, A., Predeeprompan, P. and Kongtharvonskul, J. (2017) Comparative Outcomes of Cortical Screw Trajectory Fixation and Pedicle Screw Fixation in Lumbar Spinal Fusion: Systematic Review and Meta-Analysis. World Neurosurgery, 102, 340-349.
https://doi.org/10.1016/j.wneu.2017.03.010
[19] Liu, L., Zhang, S., Liu, G., Yang, B. and Wu, X. (2019) Early Clinical Outcome of Lumbar Spinal Fixation with Cortical Bone Trajectory Pedicle Screws in Patients with Osteoporosis with Degenerative Disease. Orthopedics, 42, E465-E471.
https://doi.org/10.3928/01477447-20190604-01
[20] 郭亮兵, 潘玉林, 梅伟, 等. 皮质骨轨迹椎弓根钉在腰椎骨折翻修术中应用[J]. 中国矫形外科杂志, 2022, 30(6): 570-573.
[21] 徐子航, 龙浩, 宁旭. 导航辅助椎弓根皮质骨轨迹螺钉置钉的研究进展[J]. 创伤外科杂志, 2022, 24(3): 227-232.
[22] Matsukawa, K., Yato, Y., Nemoto, O., et al. (2013) Morphometric Mea_X0002_Surement of Cortical Bone Trajectory for Lumbar Pedicle Screw Insertion Using Computed Tomography. Journal of Spinal Disorders and Techniques, 26, E248-253.
https://doi.org/10.1097/BSD.0b013e318288ac39
[23] Iwatsuki, K., Yoshimine, T., Ohnishi, Y., et al. (2014) Isthmus-Guided Cortical Bone Trajectory for Pedicle Screw Insertion. Orthopaedic Surgery, 6, 244-248.
https://doi.org/10.1111/os.12122
[24] Dayani, F., Chen, Y.R., Johnson, E., et al. (2019) Minimally Invasive Lumbar Pedicle Screw Fixation Using Cortical Bone Trajectoryscrew Accuracy, Complications, and Learning Curve in 100 Screw Placements. Journal of Clinical Neuroscience, 61, 106-111.
https://doi.org/10.1016/j.jocn.2018.10.131
[25] Ding, H., Han, B., Hai, Y., et al. (2021) The Feasibility of Assessing the Cortical Bone Trajectory Screw Placement Accuracy Using a Tra_X0002_Ditional Pedicle Screw Fnsertion Evaluation System. Clinical Spine Surgery, 34, E112-E120.
https://doi.org/10.1097/BSD.0000000000001059
[26] Mizuno, M., Kuraishi, K., Umeda, Y., et al. (2014) Midline Lumbar Fusion with Cortical Bone Trajectory Screw. Neurologia Medico-Chirurgica (Tokyo), 54, 716-721.
https://doi.org/10.2176/nmc.st.2013-0395
[27] Li, Y., Chen, L., Liu, Y., et al. (2022) Accuracy and Safety of Robot-Assisted Cortical Bone Trajectory Screw Placement: A Comparison of Robot-Assisted Technique with Fluoroscopy-Assisted Approach. BMC Musculoskeletal Disorders, 23, Article No. 328.
https://doi.org/10.1186/s12891-022-05206-y
[28] Kaito, T., Matsukawa, K., Abe, Y., Fiechter, M., Zhu, X. and Fantigrossi, A. (2018) Cortical Pedicle Screw Placement in Lumbar Spinal Surgery with a Patient-Matched Targeting Guide: A Cadaveric Study. Journal of Orthopaedic Science, 23, 865-869.
https://doi.org/10.1016/j.jos.2018.06.005
[29] Zhao, Z., Liu, Z., Hu, Z., Tseng, C., Li, J., Pan, W., Qiu, Y. and Zhu, Z. (2018) Improved Accuracy of Screw Implantation Could Decrease the Incidence of Post-Operative Hydrothorax? O-Arm Navigation vs. Free-Hand in Thoracic Spinal Deformity Correction Surgery. International Orthopaedics, 42, 2141-2146.
https://doi.org/10.1007/s00264-018-3889-8
[30] Wang, Y., Shi, S., Zheng, Q., Jin, Y. and Dai, Y. (2021) Application of 3-Dimensional Printing Technology Combined with Guide Plates for Thoracic Spinal Tuberculosis. Medicine (Baltimore), 100, E24636.
https://doi.org/10.1097/MD.0000000000024636
[31] Senkoylu, A., Daldal, I. and Cetinkaya, M. (2020) 3D Printing and Spine Surgery. Journal of Orthopaedic Surgery (Hong Kong), 28, 1-7.
https://doi.org/10.1177/2309499020927081
[32] Shi, W., Aierken, G., Wang, S., et al. (2021) Application Study of Three-Dimensional Printed Navigation Template between Traditional and Novel Cortical Bone Trajectory on Osteoporosis Lumbar Spine. Journal of Clinical Neuroscience, 85, 41-48.
https://doi.org/10.1016/j.jocn.2020.11.038
[33] Shi, W., Aini, M., Dang, L., et al. (2022) Feasibility and Improvement of a Three-Dimensional Printed Navigation Template for Modified Cortical Bone Trajectory Screw Placement in the Lumbar Spine. Frontiers in Surgery, 9, Article ID: 1028276.
https://doi.org/10.3389/fsurg.2022.1028276
[34] Petrone, S., Marengo, N., Ajello, M., et al. (2020) Cortical Bone Trajectory Technique’s Outcomes and Procedures for Posterior Lumbar Fusion: A Retrospective Study. Journal of Clinical Neuroscience, 76, 25-30.
https://doi.org/10.1016/j.jocn.2020.04.070
[35] 王希骥, 张永远, 杨瑞泽, 等. 3D打印及导航技术辅助腰椎皮质骨轨迹螺钉置入的准确性及疗效分析[J]. 中国组织工程研究, 2019, 23(12): 1864-1869.
[36] 陈惠国, 邵荣学, 阮立奇, 等. 3D打印导向模板在骨质疏松腰椎后路融合术中的应用[J]. 实用骨科杂志, 2023, 29(12): 1057-1061.
[37] He, K., Dong, C., Wei, H., et al. (2021) A Minimally Invasive Technique Using Cortical Bone Trajectory Screws Assisted by 3D-Printed Navigation Templates in Lumbar Adjacent Segment Degeneration. Clinical Interventions in Aging, 16, 1403-1413.
https://doi.org/10.2147/CIA.S318525
[38] Di Perna, G., Marengo, N., Matsukawa, K., et al. (2023) Three-Dimensional Patient-Matched Template Guides Are Able to Increase Mean Diameter and Length and to Improve Accuracy of Cortical Bone Trajectory Screws: A 5-Year International Experience. World Neurosurgery, 170, E542-E549.
https://doi.org/10.1016/j.wneu.2022.11.066
[39] Ueno, M., Imura, T., Inoue, G., et al. (2013) Posterior Corrective Fusion Using a Double-Trajectory Technique (Cortical Bone Trajectory Combined with Traditional Trajectory) for Degenerative Lumbar Scoliosis with Osteoporosis: Technical Note. Journal of Neurosurgery: Spine, 19, 600-607.
https://doi.org/10.3171/2013.7.SPINE13191
[40] Zhao, Y., Liang, J., Luo, H., et al. (2021) Double-Trajectory Lumbar Screw Placement Guided by a Set of 3D-Printed Surgical Guide Templates: A Cadaver Study. BMC Musculoskeletal Disorders, 22, Article No. 296.
https://doi.org/10.1186/s12891-021-04149-0
[41] Verhey, J.T., Haglin, J.M., Verhey, E.M., et al. (2020) Virtual, Augmented, and Mixed Reality Applications in Orthopedic Surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 16, E2067.
https://doi.org/10.1002/rcs.2067
[42] 李金泉, 王九龙, 罗杨宇. 骨科手术机器人的研究进展及发展展望[J]. 医疗卫生装备, 2023, 44(6): 101-110.
https://doi.org/10.19745/J.1003-8868.2023126
[43] Chenin, L., Peltier, J. and Lefranc, M. (2016) Minimally Invasive Transforaminal Lumbar Interbody Fusion with the ROSA(TM) Spine Robot and Intraoperative Flat-Panel CT Guidance. Acta Neurochirurgica (Wien), 158, 1125-1128.
https://doi.org/10.1007/s00701-016-2799-z
[44] 方国芳, 吴子祥, 樊勇, 等. Renaissance脊柱机器人辅助手术系统在脊柱疾病中的应用[J]. 中华创伤骨科杂志, 2017, 19(4): 299-303.
[45] Kim, H.J., Jung, W.I., Chang, B.S., et al. (2017) A Prospective, Randomized, Controlled Trial of Robot-Assisted vs Freehand Pedicle Screw Fixation in Spine Surgery. The International Journal of Medical Robotics and Computer Assisted Surgery, 13, e1779.
https://doi.org/10.1002/rcs.1779
[46] 林书, 胡豇, 万仑, 等. 骨科机器人辅助皮质骨轨迹螺钉内固定治疗腰椎退行性疾病[J]. 中国组织工程研究, 2022, 26(15): 2356-2360.
[47] 张希诺, 刘玉增, 李越, 等. 骨科手术机器人辅助与X线透视辅助下徒手皮质骨轨迹螺钉置入治疗单节段退行性腰椎疾病的临床对比研究[J]. 首都医科大学学报, 2023, 44(5): 836-844.
[48] Mori, K., Yayama, T., Nishizawa, K., et al. (2020) Incidence of Cranial Adjacent Segment Disease after Posterior Lumbar Interbody Fusion Using the Cortical Bone Trajectory Technique for the Treatment of Single-Level Degenerative Lumbar Spondylolisthesis, More than a 2-Year Follow-Up. Spine Surgery and Related Research, 5, 98-103.
https://doi.org/10.22603/ssrr.2020-0103
[49] Le, X.F., Shi, Z., Wang, Q.L., Xu, Y.F., Zhao, J.W. and Tian, W. (2020) Rate and Risk Factors of Superior Facet Joint Violation during Cortical Bone Trajectory Screw Placement: A Comparison of Robot-Assisted Approach with a Conventional Technique. Orthopaedic Surgery, 12, 133-140.
https://doi.org/10.1111/os.12598
[50] Rho, K., O’Connor, T.E., Lucas, J.M., Pollina, J. and Mullin, J. (2021) Minimally Invasive Robot-Guided Dual Cortical Bone Trajectory for Adjacent Segment Disease. Cureus, 13, E16822.
https://doi.org/10.7759/cureus.16822
[51] Wang, C., Zhang, L., Zhang, H., Xu, D. and Ma, X. (2022) Sequential Endoscopic and Robot-Assisted Surgical Solutions for a Rare Fungal Spondylodiscitis, Secondary Lumbar Spinal Stenosis, and Subsequent Discal Pseudocyst Causing Acute Cauda Equina Syndrome: A Case Report. BMC Surgery, 22, Article No. 34.
https://doi.org/10.1186/s12893-022-01493-3
[52] 徐子航, 龙浩, 何祖波, 等. 机器人辅助皮质骨轨迹螺钉内固定术治疗腰椎退行性疾病的置钉准确率及学习曲线分析[J]. 中国脊柱脊髓杂志, 2022, 32(4): 305-312.
[53] 宋继鹏, 林万程, 姚思远, 等. 腰椎后路短节段减压融合术中应用机器人辅助下皮质骨螺钉与椎弓根螺钉固定的临床疗效比较[J]. 中国脊柱脊髓杂志, 2023, 33(12): 1098-1106.