蛋白质组学技术在术后谵妄中的研究进展
Advances in Proteomics Research in Postoperative Delirium
DOI: 10.12677/acm.2024.143893, PDF, HTML, XML, 下载: 18  浏览: 46 
作者: 闫福辉:济宁医学院临床医学院,山东 济宁
关键词: 蛋白质组组学谵妄Proteomics Delirium
摘要: 术后谵妄的病因病理非常复杂,其诊断主要依赖于主观的神经量表,因此对它们的诊断和治疗缺乏有效的方法。蛋白质组学研究主要是对生理与病理状态下的体液、组织或细胞中的蛋白质进行大通量的综合分析,并识别蛋白质表达的动态特征,这不仅可从蛋白质水平上揭示疾病的本质,还有助于全面探讨其病理机制,建立诊断标准,发现药物治疗靶点。蛋白质组学为术后谵妄的研究提供了有效的方法和手段。特别是针对术后谵妄的外泌体蛋白质组学研究极少,本文简要介绍了蛋白质组学在样品分离、定量、质谱检测及生物信息学等方面的技术发展,并对基于蛋白质组学在术后谵妄物标志物发现的研究进展进行综述。
Abstract: The etiology and pathology of postoperative delirium are highly complex, and its diagnosis mainly relies on subjective neurological scales, thus lacking effective methods for diagnosis and treatment. Proteomics research mainly involves high-throughput comprehensive analysis of proteins in body fluids, tissues, or cells under physiological and pathological states, and identifying the dynamic characteristics of protein expression. This not only reveals the nature of diseases at the protein level but also helps to thoroughly explore their pathological mechanisms, establish diagnostic criteria, and discover targets for drug treatment. Proteomics offers effective methods and means for the study of postoperative delirium. Especially, research on exosomal proteomics in postoperative delirium is scarce. This article briefly introduces the technical developments in proteomics in sample separation, quantification, mass spectrometry, and bioinformatics, and reviews the research progress in the discovery of biomarkers for postoperative delirium based on proteomics.
文章引用:闫福辉. 蛋白质组学技术在术后谵妄中的研究进展[J]. 临床医学进展, 2024, 14(3): 1673-1682. https://doi.org/10.12677/acm.2024.143893

1. 引言

谵妄是一种以注意力、意识和认知急剧变化为特征的疾病,是由无法用先前存在的神经认知障碍来解释的医学状况 [1] 。术后谵妄(POD)作为一种急性神经精神综合征,其特征是麻醉和手术后认知功能障碍和注意力下降 [2] 。POD高危患者术前脑功能储备往往较低,是老年患者骨科或者心外术后最常见的并发症,在心脏手术后发生率可高达50% [3] 。该病与住院时间延长、神经认知下降、并发症和死亡率增加,生活质量降低等多种不良结果密切相关,越来越多的证据还将术后谵妄与不良长期结果联系起来,包括认知能力的加速下降和痴呆等 [4] [5] 。尽管POD的患病率和临床重要性,但其确切的炎症和相关机制仍然未知,并且目前POD的诊断主要依赖于主观的神经评估量表,缺乏客观的特异临床标志物。因此,尽可能早期识别、诊断POD并积极干预治疗,已经成为全世界临床医生关注的问题 [6] 。近年来蛋白质组学技术已广泛应用于神经退行性病变的机制及生物标志物的探索,应用蛋白质组学技术手段在整体水平上研究神经退行性疾病的蛋白质动态变化,有助于我们揭示疾病的发病机制,寻找早期诊断的生物标志物和药物治疗的靶标,对POD的预防、诊断和治疗具有重要价值。本文简要介绍了蛋白质组学在样品分离、定量、质谱检测及生物信息学等方面的技术发展,并阐述了基于蛋白质组学在术后谵妄物标志物发现的研究进展。

2. 蛋白质组学研究概况

定义

“蛋白质组学”一词最初由Marc Wilkins于1996年提出,表示“基因组的蛋白质补充” [7] 。与基因组学和代谢组学相比,蛋白质组学有以下优势:1) 蛋白质组学是功能的直接执行者:虽然基因组学和代谢组学提供了基因和代谢产物的信息,但蛋白质是实际执行细胞功能的主要分子。2) 通过蛋白质质谱学和结构生物学等技术研究蛋白质的空间结构和动态变化,可以更好地理解其功能和调节机制。3) 蛋白质间的相互作用体现了其整体性。蛋白质负责催化生化反应、信号传递、构建细胞结构等关键生物学功能,基因的大部分功能信息都是通过蛋白质组来表征的,研究蛋白质组可以提供更直接的功能信息。因此,差异蛋白质组学技术对发现疾病诊断标志物、研究疾病发病机制、寻找新的靶向治疗药物有重要的应用价值 [8] 。

3. 蛋白质组学技术

由于蛋白质是生命科学极为重要的研究对象,因此蛋白质组学在蛋白质的分离、定量、生物信息学信息分析技术等极大推动了蛋白质组学在生物医学领域的发展与应用。

3.1. 蛋白质组分离技术

3.1.1. 基于凝胶技术的分离

在整个蛋白质组学的研究中,分离技术是整个研究的基础,目前分离技术主要有两种类型:凝胶技术、非凝胶技术。

双向凝胶电泳(2-DE)由O’Farrell和Klose等人于1975年建立。由于具有高分辨率的特点,双向凝胶电泳在蛋白质组学的研究当中始终占据着重要的地位 [9] 。但它会受到蛋白质的丰度、等电点、分子量和疏水性等限制,对于低丰度、极小或极大蛋白质、碱性和疏水性蛋白质的分离过程中存在较大的缺陷。近年来由于电泳技术的发展,出现了双向荧光差异电泳(2D-DIGE),与传统2-DE相比它对于差异蛋白的分析具有较高的重复性、准确率和敏感度。非平衡PH梯度电泳(NEPHGE)和蓝绿温和电泳(BN-PAGE)的出现为促进了碱性蛋白质及蛋白复合物的分离。

3.1.2. 非凝胶系统的分离技术

色谱(LC)是目前蛋白质组学最常用的分离技术,包括高效液相色谱(HPLC)和多维液相色谱(MDLC)。液相色谱–质谱联用(liquid chromatography/mass spectrometry, LC/MS)可以极大地提高蛋白质的鉴定数量.对于高通量复杂蛋白质混合物,多维液相色谱技术通过组合不同的色谱模式,实现对样品中低丰度蛋白质以及疏水性蛋白质的分析 [10] 。目前这种技术对蛋白质的研究具有重大意义,弥补了双向凝胶电泳的缺陷,是目前蛋白质组学最主要的技术路线。

毛细管电泳(capillary electrophoresis, CE)在蛋白质组学的研究中因为CE-MS的优势,让其越来越受关注,该技术结合了CE的高分辨率、高分离效率的优势和MS高灵敏度、覆盖度,推动了蛋白质组学在分析技术上的发展 [11] 。

3.2. 蛋白质鉴定技术

分离纯化后的蛋白质传统的鉴定方法主要有蛋白质微量测序、Edman降解法的N末端测序、C末端酶解和C末端化学降解等 [10] 。以生物质谱技术为基础的质谱分析法蛋白质鉴定技术是目前唯一的高通量蛋白质分析方法,并且具有灵敏度高、快速、准确和易实现自动化等特点。

根据离子化源的不同,质谱主要可以分为电喷雾电离质谱(ESI-MS)和基质辅助激光解析电离质谱(MALDI-MS)两大类。质量分析器是将离子源产生的离子按m/z顺序分开并排列成谱 [12] 。目前质量分析器的主要类型包括:磁分析器、飞行时间分析器、四级杆质量分析器、离子肼质量分析器和离子回旋共振分析器等 [13] 。MALDI通常与飞行时间分析器联用,即MALDI-TOF-MS),广泛应用于蛋白质组学的鉴定分析中 [14] ESI则与各种类型的质量分析器兼容。将多个质量分析器进行组合,构成串联质谱系统,可以显著提高蛋白质和多肽鉴定的灵敏度与分辨率,成为目前蛋白质组学技术发展的趋势。

3.3. 蛋白质定量技术

目前,蛋白质组研究中应用的比较成熟和可信的定量策略和方法主要有两种:一种是基于传统双向凝胶电泳及染色基础上的定量,另外一种是基于质谱检测技术的定量。

3.3.1. 基于双向凝胶电泳及其染色的蛋白质组学定量技术

在传统的双向凝胶电泳和染色基础上,通过比较不同胶上蛋白质点的染色强度来进行相对定量。现有的染色方法包括银染、考马斯亮蓝染色、荧光燃料等。染色在显示蛋白质的存在的同时,还提供了其表达水平的信息。但该方法准确定量和实现高通量的关键是找到灵敏度高、检测动态线性范围大的染料,虽然目前已有不少新的荧光染料染色技术。例如SYPRO Ruby等发光金属螯合荧光染料和双向荧光差异凝胶电泳技术采用的Cy2、Cy3和Cy5荧光染料等,因由于双向凝胶电泳本身的限制,该定量方法不能有效检测出具有极端等电点的、分子质量太大和太小的蛋白质以及低丰度的蛋白质和膜蛋白。

3.3.2. 基于质谱的蛋白质组学定量技术

该技术主要包括同位素标记定量和非标记定量技术。同位素标记定量通过特异性反应在多肽中引入结构相同但分子质量不同的稳定同位素,实现对不同样品的标记。同位素标记方法主要包括同位素标签法(iTRAQ)串联质谱标签法(TMT)、同位素亲和标签法(ICAT)、以及细胞培养稳定同位素标记法(SILAC) [15] [16] [17] [18] 。同位素标记的蛋白质组定量方法具有高精确度和敏感度,但是操作复杂、成本昂贵。非定量标记技术不需要使用同位素标签,直接将酶解产物进行质谱分析,根据肽段峰面积或对应肽段出现的总次数进行相对定量,但其准确性和精确度较低,易受样品变异和实验条件的影响 [19] [20] [21] 。

3.4. 蛋白质组学生物信息学

生物信息学在蛋白质组学中发挥着关键作用,帮助挖掘蛋白质组数据,发现蛋白质的结构、功能、互作和调控等信息。通过蛋白质的分离、定量、鉴定等技术获得大量数据,通过比对已知结构的蛋白质来推测目标蛋白的结构,以及物理原理的模拟方法进行预测,通过整合生物实验数据和计算预测方法,发现差异表达蛋白质,通过功能注释和富集分析,找到差异蛋白显著富集的生物学功能和信号通路;对差异蛋白进行互作网络分析,寻找关键节点。通过这些分析可帮助我们筛选关键蛋白、生物学功能和信号通路 [22] 。

4. 基于蛋白质组学的POD的研究现状

蛋白质组学在POD的研究

明确识别谵妄的生物标志物可能会极大地促进我们对谵妄病理生理学的理解,并可以准确识别这种病例 [23] 。由于各组学的发展,谵妄生物标志物的情况也发生了显着变化。在之前大多数生物标志物研究依赖于有针对性的方法,并且这些方法至今仍然是谵妄生物标志物研究的很大一部分。2016年之前,普遍研究的谵妄生物标志物包括乙酰胆碱酯酶(AChE)、神经元特异性烯醇化酶(ENO2)和S100-B钙结合蛋白等等。

IL-6仍然是谵妄患者中最一致公认的蛋白质之一。在功能良好的老年患者中,IL-6被发现与认知能力下降有前瞻性相关 [24] [25] [26] 。IL-6也是虚弱生物标志物核心组的一部分,最近Cardoso AL等通过构建一组生物标志物来对虚弱进行了测量,这些标记物揭示身体功能的整体下降,并导致虚弱和后来的多种疾病的发展,而IL-6是作为监测虚弱个体治疗效果的优势生物标志物 [27] 。多篇研究揭示了IL-6与术后谵妄的强相关性 [28] [29] [30] [31] ,IL-6的促炎作用及其与之前讨论的危险因素的关联都是进一步证实谵妄的神经炎症假说的证据。

CRP是炎症、感染和组织损伤的非特异性急性反应期的标志物 [30] ,与认知能力下降相关 [32] 。许多作者认为CRP水平升高与谵妄发生的较高风险相关 [33] - [38] ,并且可以监测谵妄的临床病程 [39] 。在最近对54项观察性研究进行的荟萃分析中,POD和POCD患者术后均检测到外周CRP和IL-6水平升高,发现术前CRP和IL-6水平升高与POD相关,但与POCD无关,Liu认为相对于POCD来说,CRP可能是术后谵妄(POD)更特异的标志物 [40] 。

作为小胶质细胞激活的指标,CHI3L1 被认为是神经炎症的替代标志物。CHI3L1在阿尔茨海默病和其他神经退行性疾病中由星形胶质细胞表达 [41] ,并且可以预测从前驱轻度认知障碍到AD痴呆的进展 [42] 。术后谵妄和术后认知功能障碍被认为是由小胶质细胞激活和神经炎症引起的 [43] ;因此,观察到CHI3L1在手术后增加并与临床结果相关,以及报道的CHI3L1与AD的关联也支持了该蛋白作为神经炎症介质的潜在功能。Tamara G认为CHI3L1与手术后谵妄的发生具有较高风险相关 [44] 。SAGES研究揭示了血浆CHI3L1/YKL-40绝对水平的升高与术后谵妄的发生和谵妄严重程度具有强烈相关性,且它是唯一一个在PREOP和POD2两个时间点升高的,且与术后谵妄及严重程度强相关的蛋白质 [28] ,通过对57名心脏术后患者血浆蛋白质组学分析发现了7种蛋白质与术后谵妄具有相关性,选出3种蛋白质与年龄/性别构成最佳风险预测模型,包括CCL5/LCN2/NFL,作者也提及了CHI3L1/YKL-40,认为术前CHI3L1的升高与术后谵妄具有关联性,但其AUC较低,并未纳入风险预测模型中 [31] [45] 。随着对谵妄与AD之间联系的潜在病理生理机制的继续探索,通过对CHI3L1/YKL-40在谵妄发生率和严重程度中的鉴定,揭示了其在免疫激活及炎症反应中的特定作用及其与衰老和AD的联系,为研究谵妄及其与AD的关系提供了一条潜在有前景的新途径。

通过对术前CSF蛋白质组学分析探寻术后谵妄的潜在风险标识物,作者发现术前CSF FA5水平与术后第1天的MDAS评分呈正相关 [46] ,先前的另一项研究表明,FA5多态性会增加年轻人患缺血性中风的风险 [47] ,此外,Bhattacharjee等人,报道称FA5激活剂可能与阿尔茨海默病有关;FA5激活剂使Aβ聚集体不稳定,这可能对未来的疾病预防有用 [48] 。一项早期研究发现,FA5携带者患痴呆症的风险增加了2.11倍,血管性痴呆和阿尔茨海默病的风险增加分别为4.28倍和2.15倍 [49] 。因此,FA5与POD之间的关系需要更多的队列去进一步研究。

A2M是先天免疫系统的主要组成部分,充当泛蛋白酶抑制剂和伴侣蛋白,可以稳定错误折叠的蛋白质,防止其异常聚集,并促进其清除,如阿尔茨海默病相关的淀粉样蛋白β肽和帕金森病相关的α-突触核蛋白所示 [50] [51] ,相关研究认为A2M的增加可能是对β淀粉样蛋白和α-突触核蛋白异常积累的保护性反应,这可能是po-NCD的重要病理生理机制 [52] [53] 。Li通过对骨科术后患者血清进行蛋白组学分析显示,与非POD对照相比,POD患者术后和术前血清A2M浓度差异显着增加(p < 0.001),通过构建动物模型验证发现小鼠颞叶A2M蛋白水平也升高,该实验不仅为PO-NCD提供了潜在的风险生物标志物,而且为进一步的病理机制研究提供了有价值的信息 [54] 。

AZGP1是一种由肝脏和其他器官的上皮细胞以及脂肪细胞分泌的单链多肽,存在于各种体液中,参与多种重要的生理功能。Sarinnapha [30] 认为术前较低水平的AZGP1和较高水平的CRP与较高的谵妄风险相关,作者通过构建验证单独和多种组合标志物,发现较高水平的IL-6、CRP、AZGP1等与较高的谵妄风险相关,成为最佳标记物组合,诊断谵妄具有更高的灵敏度和特异度。通过对老年髋部骨折患者的53份PREOP脑脊液(CSF)样本进行的蛋白质组学方法发现,术后谵妄患者的AZGP1表达相对于无谵妄患者有所增加,这与上面在血浆中确定的结果相反;然而,进行ELISA验证后并未发现各组之间差异 [8] ,说明血浆中的AZGP1的PREOP水平可能与谵妄的病理生理学有关,但AZGP1在术后谵妄患者的CSF水平作用可能不太重要。Zhou认为发生谵妄的患者术前血浆中AZGP1表达降低,与有发生谵妄风险的患者的炎症前状态模型非常吻合 [30] 。未来的研究需要进一步探讨AZGP1在谵妄病理生理学中的作用以及作为治疗靶点。

神经丝光(NfL)是一种高度表达的圆柱形中间丝蛋白,为有髓轴突提供结构支持,已发现在多种情况下血液中的含量升高,包括中风、TBI、多发性硬化症、AD、进行性核上性麻痹和额颞叶麻痹痴呆症,并且脑脊液(CSF)和血液中的增加似乎与轴突损伤的程度成比例 [55] ,之前已有不少研究已经发现NfL与谵妄之间存在关联,但大部分的研究集中在非蛋白质组学研究中。例如一项针对髋部骨折患者的研究发现,与无谵妄患者相比,谵妄患者术前和术后血清NfL显着升高 [56] ,同样,另一项研究发现,体外循环后NfL增加,其中谵妄患者术后水平最高。接受择期手术的老年患者队列研究表明谵妄后NFL会升高 [57] ,Valerie J Page/Charles H Brown认为较高水平的NFL与较差的认知能力相关,且与谵妄持续时间/深度镇静时长等不良临床预后相关 [58] [59] ,Fong通过对108例接受心脏手术患者分析,发现谵妄与NfL水平升高强相关,升高程度与谵妄严重程度具有相关性,术前较高的NFL更可能发生谵妄 [55] ,McB通过对57名心脏术后患者血浆蛋白质组学分析揭示了更高的NFL与谵妄的关系 [31] ,揭示了其相同的研究结果,表明谵妄和/或引发谵妄的损伤可能会导致神经轴突损伤,未来可能需要更大的队列去证明谵妄或谵妄严重程度与NFL升高之间的关系,从而揭示神经元损伤在谵妄病理生理学与长期认知能力下降之间的联系。

SERPINA3是一种丝氨酸蛋白酶抑制剂和炎症蛋白,与谵妄和阿尔茨海默病有关 [60] [61] ,SERPINA3在炎症情况下上调 [62] ,并且可以促进将Aβ肽组装成细丝 [63] 。Keenan A的研究揭示了在AD的发展过程中的SERPINA3的潜在机制作用,并表明它可能在痴呆发作后15年内尤其重要,已被证明是长期痴呆风险相关的蛋白质之一 [64] ,从SAGES研究中挑选出75名谵妄与非谵妄组患者进行蛋白质组学分析,经过ELISA验证后发现SERPINA3在术后谵妄患者中普遍升高,且具有极高的检出率 [30] 。未来需要更多的研究去揭示serpina3在谵妄发生的作用。

人血清淀粉样蛋白A (SAA)是一组与高密度脂蛋白(HDL)功能相关的多态性蛋白质的统称 [41] [65] 。尽管主要由肝脏分泌,但肝外产生的主要作用部位在大脑,并且可能与阿尔茨海默病等神经认知障碍相关 [43] [44] [64] [66] ,SAA还具有细胞因子样作用,可能引起血脑屏障(BBB)功能障碍,促进神经炎症的激活,诱发小鼠抑郁样行为,并可能导致人们认知能力下降 [45] [67] [68] 。Wiredu首次发现谵妄病例术后SAA1和SAA2均上调5倍以上(p值 < 0.001),通过使用一组独立的样本,发现正确识别谵妄患者和准确度为96%,具有较高的诊断效能 [45] ,未来可能需要更多的研究去进一步的证实SSA与谵妄之间的联系。

Kwame Wiredu系统回顾了近八年发表的相关蛋白质组学,其共同结果表明谵妄发病机制中可能的神经炎症过程在发挥着重要作用 [69] ,而这些过程主要以低丰度蛋白为主,谵妄的候选生物标志物很可能位于低丰度蛋白质组中,但目前无论是血浆还是脑脊液主要以高丰度蛋白为主。CTAB已被量化为AD的相关标识物,且与神经认知障碍相关,Kwame Wiredu另一篇文献阐述了在谵妄患者中外泌体蛋白质CTAB的上调与可能表明谵妄和持续的神经认知障碍中存在共同的病理生理学起点 [45] ,外泌体是局部和全身性细胞间通讯的介质,它们可以将功能性产物转移到受体细胞中,或参与受体细胞中的膜受体介导的信号传导,它的胞膜和包浆中富含大量的细胞信号蛋白及磷酸化蛋白 [70] 。由于其本身结构的稳定性,易富集更多的低丰度蛋白。目前关于外泌体生物标记物的研究很少,由于其广泛存在和易获得性、特定的蛋白质等为疾病的早期诊断开辟了一条重要途径。近年来外泌体在调节复杂的细胞内途径方面的内在特性提高了它们在神经退行性疾病的诊断和治疗控制中的潜在用途 [70] ,例如已被证明EVs通过促进或限制大脑中未折叠和异常折叠蛋白质的聚集,从而发挥神经保护功能或者促进疾病进展 [68] [70] 。

5. 总结与展望

迫切需要谵妄的诊断及预测生物标志物,来正确识别疾病及病理机制,它对于术前风险分层和可能的长期神经认知后遗症的随访也很重要。尽管如此,谵妄生物标志物研究似乎才刚刚兴起。只有少数研究从人类患者样本中提供了谵妄的系统生物学观点,关于术后谵妄非靶外泌体蛋白质组学的研究存在缺失,目前不同来源的外泌体在神经系统疾病诊断和治疗中已显示出临床应用的可能,然而目前的研究均为实验室级别,因此需要在将来进一步进行临床试验来验证外泌体的诊断效率及治疗效果。鉴于蛋白质生物标志物可能仅提供谵妄病理机制的部分视图,我们进一步建议探索多组学(例如转录组学、脂质组学、代谢组学)或组学成像(例如脑电图、功能磁共振成像)方法,将极大地有利于对理解疾病发病机制和疾病适用性。

参考文献

[1] Inouye, S.K., Westendorp, R.G. and Saczynski, J.S. (2014) Delirium in Elderly People. The Lancet, 383, 911-922.
https://doi.org/10.1016/S0140-6736(13)60688-1
[2] Vutskits, L. and Xie, Z. (2016) Lasting Impact of General Anaesthesia on the Brain: Mechanisms and Relevance. Nature Reviews Neuroscience, 17, 705-717.
https://doi.org/10.1038/nrn.2016.128
[3] Pedemonte, J.C., Plummer, G.S., Chamadia, S., et al. (2020) Electroencephalogram Burst-Suppression during Cardiopulmonary Bypass in Elderly Patients Mediates Postoperative Delirium. Anesthesiology, 133, 280-292.
https://doi.org/10.1097/ALN.0000000000003328
[4] Kunicki, Z.J., Ngo, L.H., Marcantonio, E.R., et al. (2023) Six-Year Cognitive Trajectory in Older Adults Following Major Surgery and Delirium. JAMA Internal Medicine, 183, 442-450.
https://doi.org/10.1001/jamainternmed.2023.0144
[5] Gou, R.Y., Hshieh, T.T., Marcantonio, E.R., et al. (2021) One-Year Medicare Costs Associated with Delirium in Older Patients Undergoing Major Elective Surgery. JAMA Surgery, 156, 430-442.
https://doi.org/10.1001/jamasurg.2020.7260
[6] Evered, L., Silbert, B., Knopman, D.S., et al. (2018) Recommendations for the Nomenclature of Cognitive Change Associated with Anaesthesia and Surgery-2018. British Journal of Anaesthesia, 121, 1005-1012.
https://doi.org/10.1016/j.bja.2017.11.087
[7] Wilkins, M.R., Sanchez, J.C., Gooley, A.A., et al. (1996) Progress with Proteome Projects: Why All Proteins Expressed by a Genome Should Be Identified and How to Do It. Biotechnology & Genetic Engineering Reviews, 13, 19-50.
https://doi.org/10.1080/02648725.1996.10647923
[8] Han, Y., Chen, W., Song, Y., et al. (2020) Proteomic Analysis of Preoperative CSF Reveals Risk Biomarkers of Postoperative Delirium. Frontiers in Psychiatry, 11, Article 170.
https://doi.org/10.3389/fpsyt.2020.00170
[9] Gygi, S.P., Corthals, G.L., Zhang, Y., et al. (2000) Evaluation of Two-Dimensional Gel Electrophoresis-Based Proteome Analysis Technology. Proceedings of the National Academy of Sciences of the United States of America, 97, 9390-9395.
https://doi.org/10.1073/pnas.160270797
[10] Wu, Q., Yuan, H., Zhang, L., et al. (2012) Recent Advances on Multidimensional Liquid Chromatography-Mass Spectrometry for Proteomics: From Qualitative to Quantitative Analysis—A Review. Analytica Chimica Acta, 731, 1-10.
https://doi.org/10.1016/j.aca.2012.04.010
[11] Gomes, F.P. and Yates 3rd, J.R. (2019) Recent Trends of Capillary Electrophoresis-Mass Spectrometry in Proteomics Research. Mass Spectrometry Reviews, 38, 445-460.
https://doi.org/10.1002/mas.21599
[12] Zubarev, R.A. and Makarov, A. (2013) Orbitrap Mass Spectrometry. Analytical Chemistry, 85, 5288-5296.
https://doi.org/10.1021/ac4001223
[13] Neagu, A.N., Jayathirtha, M., Baxter, E., et al. (2022) Applications of Tandem Mass Spectrometry (MS/MS) in Protein Analysis for Biomedical Research. Molecules, 27, Article 2411.
https://doi.org/10.3390/molecules27082411
[14] Greco, V., Piras, C., Pieroni, L., et al. (2018) Applications of MALDI-TOF Mass Spectrometry in Clinical Proteomics. Expert Review of Proteomics, 15, 683-696.
https://doi.org/10.1080/14789450.2018.1505510
[15] Ross, P.L., Huang, Y.N., Marchese, J.N., et al. (2004) Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-Reactive Isobaric Tagging Reagents. Molecular & Cellular Proteomics, 3, 1154-1169.
https://doi.org/10.1074/mcp.M400129-MCP200
[16] Dayon, L. and Sanchez, J.C. (2012) Relative Protein Quantification by MS/MS Using the Tandem Mass Tag Technology. Methods in Molecular Biology, 893, 115-127.
https://doi.org/10.1007/978-1-61779-885-6_9
[17] Gygi, S.P., Rist, B., Gerber, S.A., et al. (1999) Quantitative Analysis of Complex Protein Mixtures Using Isotope-Coded Affinity Tags. Nature Biotechnology, 17, 994-999.
https://doi.org/10.1038/13690
[18] Ong, S.E., Blagoev, B., Kratchmarova, I., et al. (2002) Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics. Molecular & Cellular Proteomics, 1, 376-386.
https://doi.org/10.1074/mcp.M200025-MCP200
[19] Hamdan, M. and Righetti, P.G. (2002) Modern Strategies for Protein Quantification in Proteome Analysis: Advantages and Limitations. Mass Spectrometry Reviews, 21, 287-302.
https://doi.org/10.1002/mas.10032
[20] Pappireddi, N., Martin, L. and Wuhr, M. (2019) A Review on Quantitative Multiplexed Proteomics. ChemBioChem, 20, 1210-1224.
https://doi.org/10.1002/cbic.201800650
[21] Sjodin, M.O., Wetterhall, M., Kultima, K., et al. (2013) Comparative Study of Label and Label-Free Techniques Using Shotgun Proteomics for Relative Protein Quantification. Journal of Chromatography B, 928, 83-92.
https://doi.org/10.1016/j.jchromb.2013.03.027
[22] Aslam, B., Basit, M., Nisar, M.A., et al. (2017) Proteomics: Technologies and Their Applications. Journal of Chromatographic Science, 55, 182-196.
https://doi.org/10.1093/chromsci/bmw167
[23] Arias, F., Alegria, M., Kind, A.J., et al. (2022) A Framework of Social Determinants of Health for Delirium Tailored to Older Adults. Journal of the American Geriatrics Society, 70, 235-242.
https://doi.org/10.1111/jgs.17465
[24] Weaver, J.D., Huang, M.H., Albert, M., et al. (2002) Interleukin-6 and Risk of Cognitive Decline: MacArthur Studies of Successful Aging. Neurology, 59, 371-378.
https://doi.org/10.1212/WNL.59.3.371
[25] Mooijaart, S.P., Sattar, N., Trompet, S., et al. (2013) Circulating Interleukin-6 Concentration and Cognitive Decline in Old Age: The PROSPER Study. Journal of Internal Medicine, 274, 77-85.
https://doi.org/10.1111/joim.12052
[26] Katsumi, Y., Racine, A.M., Torrado-Carvajal, A., et al. (2020) The Role of Inflammation after Surgery for Elders (RISE) Study: Examination of [11C]PBR28 Binding and Exploration of Its Link to Post-Operative Delirium. NeuroImage: Clinical, 27, Article 102346.
https://doi.org/10.1016/j.nicl.2020.102346
[27] Cardoso, A.L., Fernandes, A., Aguilar-Pimentel, J.A., et al. (2018) Towards Frailty Biomarkers: Candidates from Genes and Pathways Regulated in Aging and Age-Related Diseases. Ageing Research Reviews, 47, 214-277.
https://doi.org/10.1016/j.arr.2018.07.004
[28] Vasunilashorn, S.M., Dillon, S.T., Chan, N.Y., et al. (2022) Proteome-Wide Analysis Using SOMAscan Identifies and Validates Chitinase-3-Like Protein 1 as a Risk and Disease Marker of Delirium among Older Adults Undergoing Major Elective Surgery. The Journals of Gerontology: Series A, 77, 484-493.
https://doi.org/10.1093/gerona/glaa326
[29] McKay, T.B., Rhee, J., Colon, K., et al. (2022) Preliminary Study of Serum Biomarkers Associated with Delirium after Major Cardiac Surgery. Journal of Cardiothoracic and Vascular Anesthesia, 36, 118-124.
https://doi.org/10.1053/j.jvca.2021.05.002
[30] Vasunilashorn, S.M., Ngo, L.H., Chan, N.Y., et al. (2019) Development of a Dynamic Multi-Protein Signature of Postoperative Delirium. The Journals of Gerontology: Series A, 74, 261-268.
https://doi.org/10.1093/gerona/gly036
[31] Gonçalves, M., Khera, T., Otu, H., et al. (2023) Multivariable Models of Postoperative Delirium in Cardiac Surgery Patients: Proteomic and Demographic Contributions. MedRxiv.
[32] Tilvis, R.S., Kahonen-Vare, M.H., Jolkkonen, J., et al. (2004) Predictors of Cognitive Decline and Mortality of Aged People over a 10-Year Period. The Journals of Gerontology: Series A, 59, 268-274.
https://doi.org/10.1093/gerona/59.3.M268
[33] Macdonald, A., Adamis, D., Treloar, A., et al. (2007) C-Reactive Protein Levels Predict the Incidence of Delirium and Recovery from It. Age and Ageing, 36, 222-225.
https://doi.org/10.1093/ageing/afl121
[34] McManus, J., Pathansali, R., Hassan, H., et al. (2009) The Course of Delirium in Acute Stroke. Age and Ageing, 38, 385-389.
https://doi.org/10.1093/ageing/afp038
[35] Tsuruta, R., Nakahara, T., Miyauchi, T., et al. (2010) Prevalence and Associated Factors for Delirium in Critically Ill Patients at a Japanese Intensive Care Unit. General Hospital Psychiatry, 32, 607-611.
https://doi.org/10.1016/j.genhosppsych.2010.09.001
[36] Pol, R.A., Van Leeuwen, B.L., Izaks, G.J., et al. (2014) C-Reactive Protein Predicts Postoperative Delirium Following Vascular Surgery. Annals of Vascular Surgery, 28, 1923-1930.
https://doi.org/10.1016/j.avsg.2014.07.004
[37] Zhang, Z., Pan, L., Deng, H., et al. (2014) Prediction of Delirium in Critically Ill Patients with Elevated C-Reactive Protein. Journal of Critical Care, 29, 88-92.
https://doi.org/10.1016/j.jcrc.2013.09.002
[38] Vasunilashorn, S.M., Dillon, S.T., Inouye, S.K., et al. (2017) High C-Reactive Protein Predicts Delirium Incidence, Duration, and Feature Severity after Major Noncardiac Surgery. Journal of the American Geriatrics Society, 65, e109-e116.
https://doi.org/10.1111/jgs.14913
[39] Slor, C.J., Witlox, J., Adamis, D., et al. (2019) The Trajectory of C-Reactive Protein Serum Levels in Older Hip Fracture Patients with Postoperative Delirium. International Journal of Geriatric Psychiatry, 34, 1438-1446.
https://doi.org/10.1002/gps.5139
[40] Liu, X., Yu, Y. and Zhu, S. (2018) Inflammatory Markers in Postoperative Delirium (POD) and Cognitive Dysfunction (POCD): A Meta-Analysis of Observational Studies. PLOS ONE, 13, e0195659.
https://doi.org/10.1371/journal.pone.0195659
[41] Querol-Vilaseca, M., Colom-Cadena, M., Pegueroles, J., et al. (2017) YKL-40 (Chitinase 3-Like I) Is Expressed in a Subset of Astrocytes in Alzheimer’s Disease and Other Tauopathies. Journal of Neuroinflammation, 14, Article No. 118.
https://doi.org/10.1186/s12974-017-0893-7
[42] Baldacci, F., Lista, S., Cavedo, E., et al. (2017) Diagnostic Function of the Neuroinflammatory Biomarker YKL-40 in Alzheimer’s Disease and Other Neurodegenerative Diseases. Expert Review of Proteomics, 14, 285-299.
https://doi.org/10.1080/14789450.2017.1304217
[43] Cascella, M., Muzio, M.R., Bimonte, S., et al. (2018) Postoperative Delirium and Postoperative Cognitive Dysfunction: Updates in Pathophysiology, Potential Translational Approaches to Clinical Practice and Further Research Perspectives. Minerva Anestesiologica, 84, 246-260.
https://doi.org/10.23736/S0375-9393.17.12146-2
[44] Fong, T.G., Chan, N.Y., Dillon, S.T., et al. (2021) Identification of Plasma Proteome Signatures Associated with Surgery Using SOMAscan. Annals of Surgery, 273, 732-742.
https://doi.org/10.1097/SLA.0000000000003283
[45] Wiredu, K., O’Connor, S., Naseem, H., et al. (2023) Intraoperative Plasma Proteomic Changes in Cardiac Surgery: In Search of Biomarkers of Post-Operative Delirium. ProteomicsClinical Applications, 17, e2200066.
https://doi.org/10.1002/prca.202200066
[46] Alhazzani, A.A., Kumar, A. and Selim, M. (2018) Association between Factor V Gene Polymorphism and Risk of Ischemic Stroke: An Updated Meta-Analysis. Journal of Stroke and Cerebrovascular Diseases, 27, 1252-1261.
https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.12.006
[47] Bhattacharjee, P. and Bhattacharyya, D. (2013) Factor V Activator from Daboia russelli russelli Venom Destabilizes Beta-Amyloid Aggregate, the Hallmark of Alzheimer Disease. Journal of Biological Chemistry, 288, 30559-30570.
https://doi.org/10.1074/jbc.M113.511410
[48] Bots, M.L., Van Kooten, F., Breteler, M.M., et al. (1998) Response to Activated Protein C in Subjects with and Without Dementia. The Dutch Vascular Factors in Dementia Study. Haemostasis, 28, 209-215.
https://doi.org/10.1159/000022432
[49] Whiten, D.R., Cox, D., Horrocks, M.H., et al. (2018) Single-Molecule Characterization of the Interactions between Extracellular Chaperones and Toxic Alpha-Synuclein Oligomers. Cell Reports, 23, 3492-3500.
https://doi.org/10.1016/j.celrep.2018.05.074
[50] Wyatt, A.R., Constantinescu, P., Ecroyd, H., et al. (2013) Protease-Activated Alpha-2-Macroglobulin Can Inhibit Amyloid Formation via Two Distinct Mechanisms. FEBS Letters, 587, 398-403.
https://doi.org/10.1016/j.febslet.2013.01.020
[51] Yang, N., Li, Z., Han, D., et al. (2020) Autophagy Prevents Hippocampal Alpha-Synuclein Oligomerization and Early Cognitive Dysfunction after Anesthesia/Surgery in Aged Rats. Aging (Albany NY), 12, 7262-7281.
https://doi.org/10.18632/aging.103074
[52] Dong, Y., Zhang, G., Zhang, B., et al. (2009) The Common Inhalational Anesthetic Sevoflurane Induces Apoptosis and Increases Beta-Amyloid Protein Levels. Archives of Neurology, 66, 620-631.
https://doi.org/10.1001/archneurol.2009.48
[53] Li, Y., Chen, L., Li, Z., et al. (2021) Potential Serum Biomarkers for Postoperative Neurocognitive Disorders Based on Proteomic Analysis of Cognitive-Related Brain Regions. Frontiers in Aging Neuroscience, 13, Article 741263.
https://doi.org/10.3389/fnagi.2021.741263
[54] Westhoff, D., Witlox, J., Van Aalst, C., et al. (2015) Preoperative Protein Profiles in Cerebrospinal Fluid in Elderly Hip Fracture Patients at Risk for Delirium: A Proteomics and Validation Study. BBA Clinical, 4, 115-122.
https://doi.org/10.1016/j.bbacli.2015.10.002
[55] Fong, T.G., Vasunilashorn, S.M., Ngo, L., et al. (2020) Association of Plasma Neurofilament Light with Postoperative Delirium. Annals of Neurology, 88, 984-994.
https://doi.org/10.1002/ana.25889
[56] Halaas, N.B., Blennow, K., Idland, A.V., et al. (2018) Neurofilament Light in Serum and Cerebrospinal Fluid of Hip Fracture Patients with Delirium. Dementia and Geriatric Cognitive Disorders, 46, 346-357.
https://doi.org/10.1159/000494754
[57] Casey, C.P., Lindroth, H., Mohanty, R., et al. (2020) Postoperative Delirium Is Associated with Increased Plasma Neurofilament Light. Brain, 143, 47-54.
https://doi.org/10.1093/brain/awz354
[58] Page, V.J., Watne, L.O., Heslegrave, A., et al. (2022) Plasma Neurofilament Light Chain Protein as a Predictor of Days in Delirium and Deep Sedation, Mortality and Length of Stay in Critically Ill Patients. eBioMedicine, 80, Article 104043.
https://doi.org/10.1016/j.ebiom.2022.104043
[59] Brown, C.H., Lewis, A., Probert, J., et al. (2022) Perioperative Neurofilament Light Plasma Concentrations and Cognition Before and after Cardiac Surgery: A Prospective Nested Cohort Study. Anesthesiology, 137, 303-314.
https://doi.org/10.1097/ALN.0000000000004327
[60] Poljak, A., Hill, M., Hall, R.J., et al. (2014) Quantitative Proteomics of Delirium Cerebrospinal Fluid. Translational Psychiatry, 4, e477.
https://doi.org/10.1038/tp.2014.114
[61] Padmanabhan, J., Levy, M., Dickson, D.W., et al. (2006) Alpha1-Antichymotrypsin, An Inflammatory Protein Overexpressed in Alzheimer’s Disease Brain, Induces Tau Phosphorylation in Neurons. Brain, 129, 3020-3034.
https://doi.org/10.1093/brain/awl255
[62] Takamiya, A., Takeda, M., Yoshida, A., et al. (2002) Inflammation Induces Serine Protease Inhibitor 3 Expression in the Rat Pineal Gland. Neuroscience, 113, 387-394.
https://doi.org/10.1016/S0306-4522(02)00198-7
[63] Ma, J., Yee, A., Brewer, H.B., et al. (1994) Amyloid-Associated Proteins Alpha 1-Antichymotrypsin and Apolipoprotein E Promote Assembly of Alzheimer Beta-Protein into Filaments. Nature, 372, 92-94.
https://doi.org/10.1038/372092a0
[64] Walker, K.A., Chen, J., Shi, L., et al. (2023) Proteomics Analysis of Plasma from Middle-Aged Adults Identifies Protein Markers of Dementia Risk in Later Life. Science Translational Medicine, 15, eadf5681.
https://doi.org/10.1126/scitranslmed.adf5681
[65] Maldonado, J.R. (2018) Delirium Pathophysiology: An Updated Hypothesis of the Etiology of Acute Brain Failure. International Journal of Geriatric Psychiatry, 33, 1428-1457.
https://doi.org/10.1002/gps.4823
[66] Connolly, K., Lehoux, M., O’Rourke, R., et al. (2023) Potential Role of Chitinase-3-Like Protein 1 (CHI3L1/YKL-40) in Neurodegeneration and Alzheimer’s Disease. Alzheimers & Dementia, 19, 9-24.
https://doi.org/10.1002/alz.12612
[67] Bowman, G.L., Dayon, L., Kirkland, R., et al. (2018) Blood-Brain Barrier Breakdown, Neuroinflammation, and Cognitive Decline in Older Adults. Alzheimers & Dementia, 14, 1640-1650.
https://doi.org/10.1016/j.jalz.2018.06.2857
[68] Pallo, S.P., DiMaio, J., Cook, A., et al. (2016) Mechanisms of Tau and Abeta-Induced Excitotoxicity. Brain Research, 1634, 119-131.
https://doi.org/10.1016/j.brainres.2015.12.048
[69] Wiredu, K., Aduse-Poku, E., Shaefi, S., et al. (2023) A Systematic Review of Major Studies. Anesthesia & Analgesia, 136, 422-432.
https://doi.org/10.1213/ANE.0000000000006246
[70] Kalluri, R. and LeBleu, V.S. (2020) The Biology, Function, and Biomedical Applications of Exosomes. Science, 367.
https://doi.org/10.1126/science.aau6977