一类分式优化问题的带非单调线搜索的近端梯度次梯度算法研究
Research on the ProximalGradient-Subgradient Algorithm with Nonmonotonic Line Search for a Class of Fractional Optimization Problems
DOI: 10.12677/AAM.2024.133105, PDF, 下载: 30  浏览: 55 
作者: 张 景:河北工业大学理学院数学系,天津
关键词: 分式优化近端梯度次梯度算法收敛性分析Fractional Optimization Proximal Gradient-Subgradient Algorithm Convergence Analysis
摘要: 本文主要研究一类分式优化问题,其中分子是凸非光滑连续函数与非凸光滑函数的和,分母为凸 非光滑函数。 首先给出了问题的一阶最优性条件,然后给出了求解分式优化问题的新算法,即带 非单调线搜索的近端梯度次梯度算法(简称NL-PGSA)。此外,基于Kurdyka-L- ojasiewicz性质, 可以保证算法生成的整个序列的全局收敛性,最后,对l1/l2稀疏信号恢复问题进行了数值实验,验 证了该算法的有效性。
Abstract: This paper mainly considers a class of fractional optimization problems where the numerator is a sum of a convex nonsmooth continuous function and a nonconvex smooth function, while the denominator is a convex nonsmooth function. We first give the first-order optimality condition of the problem, and then a new algorithm, called proximal gradient-subgradient algorithm with nonmonotonic line search (NL-PGSA), is proposed for solving the fractional optimization problems. Moreover, the global convergence of the entire sequence generated by NL-PGSA algorithm has been proven based on the Kurdyka-L- ojasiewicz property. Finally, some numerical experiments on the l1/l2 sparse signal recovery problems are conducted to demonstrate the efficiency of the proposed algorithm.
文章引用:张景. 一类分式优化问题的带非单调线搜索的近端梯度次梯度算法研究[J]. 应用数学进展, 2024, 13(3): 1129-1139. https://doi.org/10.12677/AAM.2024.133105

参考文献

[1] Baldacci, R., Lim, A., Traversi, E. and Calvo, R.W. (2020) Optimal Solution of Vehicle Routing Problems with Fractional Objective Function. Transportation Science, 54, 434-452.
https://doi.org/10.1287/trsc.2019.0929
[2] Rahimi, Y., Wang, C., Dong, H. and Lou, Y. (2019) A Scale-Invariant Approach for Sparse Signal Recovery. SIAM Journal on Scientific Computing, 41, A3649-A3672.
https://doi.org/10.1137/18M123147X
[3] Studer, C. and Baraniuk, R.G. (2014) Stable Restoration and Separation of Approximately Sparse Signals. Applied and Computational Harmonic Analysis, 37, 12-35.
https://doi.org/10.1016/j.acha.2013.08.006
[4] Cand`es, E., Romberg, J.K. and Tao, T. (2006) Stable Signal Recovery from Incomplete and Inaccurate Measurements. Communications on Pure and Applied Mathematics, 59, 1207-1223.
https://doi.org/10.1002/cpa.20124
[5] Hoyer, P.O. (2004) Non-Negative Matrix Factorization with Sparseness Constraints. Journal of Machine Learning Research, 5, 1457-1469.
[6] Shen, K. and Yu, W. (2018) Fractional Programming for Communication Systems—Part I: Power Control and Beamforming. IEEE Transactions on Signal Processing, 66, 2616-2630.
https://doi.org/10.1109/TSP.2018.2812733
[7] Zappone, A., Sanguinetti, L. and Debbah, M. (2017) Energy-Delay Efficient Power Control in Wireless Networks. IEEE Transactions on Communications, 66, 418-431.
https://doi.org/10.1109/TCOMM.2017.2755644
[8] Konno, H. and Inori, M. (1989) Bond Portfolio Ptimization by Bilinear Fractional Program- ming. Journal of the Operations Research Society of Japan, 32, 143-158.
https://doi.org/10.15807/jorsj.32.143
[9] Clemmensen, L., Hastie, T., Witten, D. and Ersbøll, B. (2100) Sparse Discriminant Analysis. Technometrics, 53, 406-413.
https://doi.org/10.1198/TECH.2011.08118
[10] Ibaraki, T. (1983) Prametric Approaches to Fractional Programs. Mathematical Programming, 26, 345-362.
https://doi.org/10.1007/BF02591871
[11] Pang, J.S. (1980) A Parametric Linear Complementarity Technique for Optimal Portfolio Selection with a Risk-Free Asset. Operation Research, 28, 927-941.
https://doi.org/10.1287/opre.28.4.927
[12] Schaible, S. (1976) Fractional Programming. II, on Dinkelbach’s Algorithm. Management Sci- ence, 22, 868-873.
https://doi.org/10.1287/mnsc.22.8.868
[13] Bot, R.I. and Csetnek, E.R. (2017) Proximal-Gradient Algorithms for Fractional Programming. Optimization, 66, 1383-1396.
https://doi.org/10.1080/02331934.2017.1294592
[14] Zhang, N. and Li, Q. (2022) First-Order Algorithms for a Class of Fractional Optimization Problems. SIAM Journal on Optimization, 32, 100-129.
https://doi.org/10.1137/20M1325381
[15] Attouch, H., Bolte, J., Redont, P. and Soubeyran, A. (2010) Proximal Alternating Minimiza- tion and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka- L� ojasiewicz Inequality. Mathematics of Operations Research, 35, 438-457.
https://doi.org/10.1287/moor.1100.0449