SGLT2抑制剂治疗射血分数保留型心力衰竭的作用机制及临床研究进展
Progress of Clinical Research and Mechanism of Sodium-Glucose Cotransporter 2 Inhibitors in Treatment of Heart Failure with Preserved Ejection Fraction
DOI: 10.12677/acm.2024.144980, PDF, HTML, XML, 下载: 48  浏览: 89  科研立项经费支持
作者: 杨小凤*, 王浩宇#:川北医学院第二临床医学院,四川 南充
关键词: 钠–葡萄糖协同转运蛋白SGLT2心力衰竭射血分数保留型心力衰竭作用机制Sodium-Glucose Cotransporter SGLT2 Heart Failure HFpEF Mechanism
摘要: 近年来有研究观察到SGLT2抑制剂可以降低HFpEF的心血管死亡或心衰住院等心血管事件风险,而其在HFpEF中的具体作用机制目前尚不明确,SGLT2抑制剂在治疗HFpEF患者中,其提供心脏保护的作用机制涉及降低炎症和氧化应激反应、减少心外膜脂肪组织、纠正细胞质钠和钙稳态失调、抗间质纤维化、改善心肌能量代谢等多个方面,从而使HFpEF患者临床获益。本文旨在探讨SGLT2抑制剂在HFpEF中可能的作用机制及临床研究进展,为SGLT2抑制剂治疗HFpEF患者的作用机制研究提供一定的参考,并为SGLT2抑制剂临床应用作用机制研究的深入开展提供借鉴。
Abstract: Recent investigations have demonstrated that SGLT2 inhibitors can reduce the risk of cardiovascular events, including cardiovascular death or hospitalization due to heart failure in patients with HFpEF. However, the specific mechanisms of action of SGLT2 inhibitors in HFpEF are currently unclear. The potential mechanisms included encompass inflammation and oxidative stress reduction, decrease in epicardial adipose tissue, correction of cytoplasmic sodium and calcium homeostasis, anti-interstitial fibrosis effects and enhancement of myocardial energy metabolism. These mechanisms collectively contribute to the observed clinical benefits in HFpEF patients. This paper aims to summarize the mechanisms of SGLT2 inhibitors in the treatment of patients with HFpEF and the progress of clinical research, providing a reference for the study of the mechanisms of action of SGLT2 inhibitors in treating patients with HFpEF, and offering insights for further research on the clinical application mechanisms of SGLT2 inhibitors.
文章引用:杨小凤, 王浩宇. SGLT2抑制剂治疗射血分数保留型心力衰竭的作用机制及临床研究进展[J]. 临床医学进展, 2024, 14(4): 1-8. https://doi.org/10.12677/acm.2024.144980

1. 引言

心力衰竭(heart failure, HF)是一种多方面危及生命的综合征,其发病率及死亡率高,全球有6400多万慢性心衰患者 [1] 。《2022年美国心脏病学会/美国心脏协会/美国心力衰竭协会(AHA/ACC/HFSA)心力衰竭管理指南》 [2] 中将慢性心力衰竭根据左心室射血分数(left ventricular ejection fraction, LVEF)分为射血分数降低型心力衰竭(HFrEF, LVEF ≤ 40%),射血分数保留型心力衰竭(heart failure with preserved ejection fraction,以下均称HFpEF,LVEF ≥ 50%)和射血分数轻度降低型心力衰竭(HFmrEF,LVEF为41%~49%)。其中,HFpEF占所有HF患者的一半以上 [3] 。HFpEF的危险因素包括高龄、高血压、糖尿病、血脂异常和肥胖等。随着许多国家人口老龄化程度加剧,以及高血压、糖尿病和肥胖等患病率的增加,HFpEF的发病率和患病率也在逐年增加 [4] [5] 。目前临床常用的心力衰竭治疗方案(ACEI/ARB、盐皮质激素受体激动剂、β受体阻滞剂、血管紧张素受体脑啡肽酶抑制剂/ARNi)在HFpEF中的确切疗效未得到证实 [6] ,而钠–葡萄糖协同转运蛋白2 (sodium-glucose cotransporter 2,以下均称SGLT2)抑制剂的临床应用改变了这一现状。

SGLT2抑制剂是一类新型口服降糖药物,目前发现其除了降糖效果外,还能降低HFpEF患者心血管事件结局风险 [7] [8] [9] [10] 。EMPEROR-Preserved大型随机、双盲、安慰剂对照的临床试验研究结果表明,恩格列净能降低HFpEF患者的心血管死亡或心衰住院风险的复合结局(P < 0.001) [7] ,有关达格列净的DELIVER试验 [8] 、索格列净的SOLOIST-WHF试验 [9] 、埃格列净的VERTIS-CV试验 [10] 均表明SGLT2抑制剂可降低HFpEF患者的心血管死亡风险和HF住院率。SGLT2抑制剂使HFpEF患者心血管事件结局获益的相关机制尚不明确。本文旨在介绍SGLT2抑制剂在治疗HFpEF患者病程中可能的作用机制及相关临床研究进展。

2. SGLT2抑制剂治疗HFpEF可能的作用机制

2.1. 降低炎症和氧化应激反应

在HFpEF中,慢性炎症和氧化应激反应的增加已被证明会导致结构性和功能性的舒张功能障碍 [11] 。Kolijn等 [12] 研究结果显示,恩格列净体外处理人HFpEF心肌细胞,可以显著降低人HFpEF心肌细胞中的促炎标志物(白细胞介素6 (IL-6)、肿瘤坏死因子α (TNF-α)、细胞间粘附分子-1 (ICAM-1);血管细胞粘附分子-1 (VCAM-1))水平,并降低病理性氧化指标(过氧化氢(H2O2)、3-硝基酪氨酸、还原型谷胱甘肽(GSH)、过氧化脂质浓度),显著减轻心肌细胞的炎症和氧化应激反应,改善HFpEF患者的心肌纤维化,降低心肌细胞僵硬度,从而改善心室舒张功能。在HFpEF大鼠模型中 [13] ,达格列净使上调的NF-κB (促炎标志物的主要调节因子)表达降低(P < 0.05)伴随着单核细胞趋化蛋白1 (MCP1, P < 0.01)和IL-6 (P < 0.01)表达的降低,从而减弱炎症反应,同时,该实验也观察到,达格列净还改善了心脏舒张表现:E/A比值增加,E波减速时间和等容舒张时间缩短。炎症或氧化应激反应的增加可能是心肌纤维化或心室肥大发展过程的潜在危险因素 [14] ,SGLT2抑制剂通过发挥减弱炎症或氧化应激反应的作用,将有利于改善HFpEF患者的心肌纤维化或心室肥大,改善舒张功能 [11] [12] 。

2.2. 减少心外膜脂肪组织

心外膜脂肪组织(epicardial adipose tissue, EAT)是包绕主动脉弓、冠状动脉、心室和心尖的内脏脂肪沉积,其间没有诸如筋膜之类的结构将EAT与心肌分开,二者共享相同的微循环 [15] 。EAT可能对邻近的动脉壁产生血管分泌和/或旁分泌作用,通过分泌炎症介质(如TNF-α、IL-6、IL-8等)、促纤维化细胞因子(基质金属蛋白酶、转化生长因子-β1 (transforming growth factor-β1, TGFβ1)和TGFβ2、结缔组织生长因子和激活素A等)和脂肪细胞因子,促进动脉粥样硬化的发展 [16] 。同时,EAT衍生的促炎脂肪因子、促纤维化细胞因子对心肌也具有直接的旁分泌作用,并已被证明会造成心肌细胞炎症以及心肌纤维化等影响 [15] [16] 。增加的EAT也增加了心脏机械性约束,增强了舒张期心室相互作用,从而加重舒张功能不全 [17] 。SGLT2抑制剂通过增加尿葡萄糖排泄来降低血糖,继而导致血浆胰岛素水平降低和胰高血糖素水平升高,这种整体代谢效应有利于脂肪分解,减少EAT [18] 。三项SGLT2抑制剂对EAT影响的临床试验表明 [19] [20] [21] ,卡格列净治疗24周内使EAT减少20.34% [19] ,鲁格列净治疗12周内使EAT减少5.13% [20] ,伊格列净治疗12周内使EAT减少12.75% [21] 。一项纳入三个观察性试验的荟萃分析结果提示,与对照组相比,SGLT2抑制剂治疗与患者的EAT显著减少有关(95% CI: −1.49~−0.15; P < 0.0001) [22] 。减少EAT可以通过解除心室约束而改善心室舒张功能,也能减少心脏组织周围促炎和促纤维化细胞因子的重要来源。因此,SGLT2抑制剂减少EAT可能改善HFpEF患者心室舒张功能及心肌纤维化水平,未来仍需进一步研究,以阐明SGLT2抑制剂对EAT的独立影响。

2.3. 纠正细胞质钠和钙稳态失调

钠氢交换蛋白1 (Na+/H+ exchanger 1, NHE1)的病理性过度表达会激活钙依赖性钙调磷酸酶信号通路,导致额外的钠和钙超载,促进氧化损伤、兴奋–收缩耦合受损、纤维化、组织损伤和细胞炎性死亡 [23] 。心力衰竭患者心脏心肌有明显的NHE1的过度表达,它通过引起细胞内钠的积累,钠离子与细胞外钙离子交换增加,导致细胞内钙超载,减弱心肌氧利用能力,激活磷酸酶,引起细胞器结构破坏,细胞水肿、凋亡甚至坏死,促进心肌纤维化及心室重构;此外,NHE1的过度表达可能会导致细胞内碱中毒,增加肌丝的钙反应性,从而损害舒张功能 [24] [25] 。SGLT2抑制剂通过抑制钙依赖性钙调磷酸酶的活性,从而抑制NHE1的病理性过度表达,发挥了维持细胞内的钠和钙离子水平动态平衡功能,潜在的改善患者心脏收缩和舒张功能。Trum等 [25] 研究表明,患有房颤的HFpEF患者心房NHE1表达显著增加,恩格列净的应用可抑制心肌细胞中的NHE表达,为SGLT2抑制剂抑制NHE从而纠正细胞质钠和钙稳态失调的潜在心脏保护机制提供了证据。在HFpEF大鼠模型中 [13] ,慢性抑制NHE1已被证明可以减少氧化应激和纤维化,改善舒张期功能,并预防心室重塑。

2.4. 抗间质纤维化

间质纤维化的增加是导致HFpEF发展的多种因素之一,成纤维细胞激活的过程中,伴有大量的细胞外基质(extracellular matrix, ECM)的沉积,ECM中的胶原交联,促进纤维状胶原受体的激活并上调促纤维化细胞因子(TGFβ1)的表达,进而促进肌成纤维细胞的形成,增加心肌硬度改变心室几何形状并损害舒张功能 [26] 。在Kang等 [27] 的人心脏成纤维细胞的体外研究中发现,恩格列净可显著减弱TGFβ1诱导的肌成纤维细胞的活化,用高浓度恩格列净(5 μmol/l)处理的成纤维细胞尺寸更小,细胞延伸长度和延伸总数减少,此外,恩格列净降低了ECM重塑反应,并降低了促纤维化相关基因表达 [27] 。这项研究表明,恩格列净可直接作用于人心脏成纤维细胞,改善肌成纤维细胞表型并降低其促纤维化作用。

2.5. 改善肾脏功能

肾功能不全被认为是HFpEF的潜在危险因素 [28] 。在HFpEF患者中,有高达36.5%的患者存在估计肾小球滤过率(estimated glomerular filtration rate, eGFR)降低或蛋白尿增加等肾功能不全,且其病死率风险随肾功能不全程度的加重而升高 [29] 。SGLT2抑制剂的应用通过调节肾脏血流动力学,从而降低高血压和肾小球高滤过、高蛋白尿和慢性缺氧,改善肾脏功能 [18] 。EMPA-REGOUTCOME大型双盲、安慰剂对照试验二次分析结果显示 [30] ,恩格列净继发的肾小球效应可导致蛋白尿的初始增加和eGFR的短暂下降,这种下降通常持续在服用恩格列净前4周,然后稳定下来,与安慰剂组相比(−1.46 ml/min/1.73m2/年;95% CI: −1.74~−1.17),恩格列净治疗组显示出远期eGFR下降幅度较缓(+0.23 ml/min/1.73m2/年;95% CI: 0.05~0.40;P < 0.001恩格列净VS安慰剂)。鉴于心–肾轴双向关系,SGLT2抑制剂改善肾脏功能同时可能会间接提供心脏保护。已有EMPEROR-Preserved大型随机、双盲、安慰剂对照的临床试验结果表明 [7] ,恩格列净可以降低HFpEF (LVEF > 40%)患者心血管死亡或心力衰竭住院的复合结局以及eGFR下降的斜率(P < 0.001)。另一方面,SGLT2抑制剂通过减少葡萄糖和钠的重吸收而发挥着利尿和利钠的作用 [18] 。有假说提出,SGLT2抑制剂诱导的渗透性利尿(游离水丢失)可将心肌间质液体射入血管间隙,从而改善舒张期功能,降低充盈压 [31] 。同时,Karagodin等 [32] 回顾性病例对照研究结果表明,与钠尿相关的长期负钠平衡可以减少主动脉硬化,潜在地减轻HFpEF的症状和进展。综上,改善肾脏功能在HFpEF患者中的潜在优势还需进一步研究证实。

2.6. 改善心肌能量代谢

SGLT2抑制剂的使用改善了衰竭心肌中天然低效的能量供应机制,将其主要燃料来源(脂肪和葡萄糖氧化)改变为了酮体,其具有内在抗炎和抗重塑作用,同时能量来源更有效 [33] 。一项前瞻性研究表明 [34] ,SGLT2抑制剂可以诱导衰竭心肌中异常支链氨基酸的降解,作为心肌燃料的替代来源,从而改善心脏能量供应。

2.7. 其他可能的保护机制

SGLT2抑制剂还可以通过减少交感神经系统的激活,刺激促红细胞生成素改善心肌供氧,诱导细胞内细胞器中的自噬,维持细胞稳态,减少心肌细胞氧化凋亡来为HFpEF患者提供心脏保护 [35] [36] [37] 。但具体机制尚不明确。

3. SGLT2抑制剂对HFpEF疗效的两项高质量临床研究

3.1. EMPEROR-Preserved试验

EMPEROR-Preserved试验 [7] ,旨在研究恩格列净(10 mg/d)对HFpEF患者(LVEF > 40%)心力衰竭结局的影响,不论是否患有糖尿病。总共纳入了5988名患者(恩格列净组2997名;安慰剂组2991名),中位随访时间为26.2个月。中位LVEF为54%,但三分之一患者的LVEF在40%至49%之间(HFmrEF);因此,只有三分之二的病例属于严格的HFpEF。与安慰剂相比,恩格列净显著降低了主要终点事件心血管死亡或心力衰竭住院的复合结局(RR 17%) (13.8% vs 17.1%; HR: 0.79; 95% CI: 0.69~0.90; P < 0.001),同时,心衰住院总人数显著减少(HR: 0.73; 95% CI: 0.61~0.88; P < 0.001),并降低了eGFR下降的斜率(−1.25 ± 0.11 vs. −2.62 ± 0.11; P < 0.001),但对全因死亡率没有明显影响(14.1% vs 14.3%; HR: 1.00; 95% CI: 0.87~1.15)。同时也观察到在患有或不患有糖尿病和预先指定的射血分数亚组的主要结局益处是一致的;然而对于LVEF ≥ 60%的患者,获益似乎略有减弱。

总的来说,EMPEROR-Preserved试验显示,恩格列净在降低症状稳定HFpEF (EF > 40%)患者的心血管死亡和住院风险方面优于安慰剂,不论是否患有糖尿病。这一临床试验结果 [7] 对于HFpEF患者的管理具有开创性,为HFpEF患者带来了新的治疗选择。

3.2. DELIVER试验

DELIVER试验 [8] ,旨在研究达格列净(10 mg/d)对HFpEF患者(LVEF ≥ 40%)心力衰竭恶化(定义为因心力衰竭计划外住院或因心力衰竭紧急就诊)或心血管死亡的综合结果的影响,不论是否患有糖尿病。总共纳入了6263名患者(达格列净组3131名;安慰剂组3132名),中位随访时间为 2.3年。与安慰剂相比,达格列净可降低主要复合结局(心力衰竭恶化或心血管死亡)的风险。在总人群中,达格列净组的心血管死亡以及首次和复发性心力衰竭恶化事件的数量低于安慰剂组(HR: 0.77; 95% CI: 0.67~0.89; P < 0.001),达格列净组的总事件和症状负担也较低。达格列净对主要结局的影响在LFVEF ≥ 60%或<60%的亚组中是一致的,无论是否患有糖尿病。两组不良事件的总体发生率相似。

DELIVER试验结果显示,在射血分数轻度降低或保留的心力衰竭患者中,达格列净可降低主要复合结局(心力衰竭恶化或心血管死亡)的风险,减少心力衰竭恶化事件和心血管死亡的发生,并降低症状负担,且没有过多的不良事件。这一具有临床意义的证据证实了SGLT2抑制剂在HFpEF中的应用。

4. SGLT2抑制剂治疗HFpEF的荟萃分析

一项纳入了6项随机对照研究,共计15,989例患者的荟萃分析 [38] 结果显示,与安慰剂相比,SGLT2抑制剂降低了心血管死亡率或首次因心力衰竭住院的复合结局(HR: 0.80; 95% CI: 0.74~0.87; P < 0.001, I2 = 0%),心力衰竭住院(HR: 0.74; 95% CI: 0.67~0.82; P < 0.001, I2 = 0%)。然而,两组的全因死亡率(HR: 0.97; 95% CI: 0.89~1.06; P = 0.54, I2 = 0%)和心血管死亡率(HR, 0.96; 95% CI: 0.82~1.13; P = 0.66, I2 = 35.09%)相当。

5. 结语

HFpEF的发病率和患病率逐年增加,传统的心力衰竭治疗药物未能明确改善HFpEF患者的远期预后。然而,大量的临床试验结果表明,SGLT2抑制剂能够降低HFpEF患者心血管事件的发生风险。根据《射血分数保留的心力衰竭诊断与治疗中国专家共识2023》 [39] ,SGLT2抑制剂已被推荐为强级治疗药物,证据质量达到A级,用于降低HFpEF患者的心力衰竭住院或心血管死亡复合终点事件风险。尽管SGLT2抑制剂的确切生物学作用机制尚未完全明确,传统的获益机制指出SGLT2抑制剂可能通过利尿、降压、体重减轻和血糖控制改善等方面提供心脏保护。然而,本文通过最新研究揭示了SGLT2抑制剂的新型潜在获益机制,包括减弱炎症和氧化应激反应、减少心脏周围脂肪(EAT)、维持细胞质钠和钙离子稳态、抑制间质纤维化以及改善心肌能量代谢等多重效应。这些机制有助于改善舒张期功能和减轻心室重构,从而使HFpEF患者获益。建立确切的获益机制对于理解SGLT2抑制剂的益处至关重要,同时也可能为未来新型治疗方法的发掘提供新的途径。随着未来临床研究的不断更新和推进,SGLT2抑制剂治疗HFpEF的生物学作用机制将逐步揭晓,为我们更好地理解HFpEF的病理生理学并发掘潜在的新型治疗方法提供更为丰富的路径。

基金项目

四川省南充市校合作科研项目(18SXHZ0089)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Savarese, G., Becher, P.M., Lund, L.H., et al. (2023) Global Burden of Heart Failure: A Comprehensive and Updated Review of Epidemiology. Cardiovascular Research, 118, 3272-3287.
https://doi.org/10.1093/cvr/cvac013
[2] Heidenreich, P.A., Bozkurt, B., Aguilar, D., et al. (2022) ACC/AHA/HFSA Guideline for the Management of Heart Failure. Journal of Cardiac Failure, 28, e1-e167.
https://doi.org/10.1016/j.cardfail.2022.02.009
[3] Gladden, J.D., Chaanine, A.H. and Redfield, M.M. (2018) Heart Failure with Preserved Ejection Fraction. Annual Review of Medicine, 69, 65-79.
https://doi.org/10.1146/annurev-med-041316-090654
[4] Omote, K., Verbrugge, F.H. and Borlaug, B.A. (2022) Heart Failure with Preserved Ejection Fraction: Mechanisms and Treatment Strategies. Annual Review of Medicine, 73, 321-337.
https://doi.org/10.1146/annurev-med-042220-022745
[5] Tsao, C.W., Lyass, A., Enserro, D., et al. (2018) Temporal Trends in the Incidence of and Mortality Associated with Heart Failure with Preserved and Reduced Ejection Fraction. JACC: Heart Fail, 6, 678-685.
https://doi.org/10.1016/j.jchf.2018.03.006
[6] Heidenreich, P.A., Bozkurt, B., Aguilar, D., et al. (2022) AHA/ACC/HFSA Guideline for the Management of Heart Failure: A Report of the American College of Cardiology/American Heart Association Joint Committee on Clinical Practice Guidelines. Circulation, 145, e895-e1032.
https://doi.org/10.1161/CIR.0000000000001073
[7] Anker, S.D., Butler, J., Filippatos, G., et al. (2021) Empagliflozin in Heart Failure with a Preserved Ejection Fraction. The New England Journal of Medicine, 385, 1451-1461.
https://doi.org/10.1056/NEJMoa2107038
[8] Solomon, S.D., McMurray, J.J.V., Claggett, B., et al. (2022) Dapagliflozin in Heart Failure with Mildly Reduced or Preserved Ejection Fraction. The New England Journal of Medicine, 387, 1089-1098.
https://doi.org/10.1056/NEJMoa2206286
[9] Bhatt, D.L., Szarek, M., Steg, P.G., et al. (2021) Sotagliflozin in Patients with Diabetes and Recent Worsening Heart Failure. The New England Journal of Medicine, 384, 117-128.
https://doi.org/10.1056/NEJMoa2030183
[10] Cowart, K. and Carris, N.W. (2021) Evaluation of Cardiovascular and Renal Outcomes with Ertugliflozin: What Is the VERdict from the VERTIS-CV Trial? Expert Opinion on Pharmacotherapy, 22, 163-165.
https://doi.org/10.1080/14656566.2020.1822327
[11] Zhazykbayeva, S., Pabel, S., Mügge, A., et al. (2020) The Molecular Mechanisms Associated with the Physiological Responses to Inflammation and Oxidative Stress in Cardiovascular Diseases. Biophysical Reviews, 12, 947-968.
https://doi.org/10.1007/s12551-020-00742-0
[12] Kolijn, D., Pabel, S., Tian, Y., et al. (2021) Empagliflozin Improves Endothelial and Cardiomyocyte Function in Human Heart Failure with Preserved Ejection Fraction via Reduced Pro-Inflammatory-Oxidative Pathways and Protein Kinase Galpha Oxidation. Cardiovascular Research, 117, 495-507.
https://doi.org/10.1093/cvr/cvaa123
[13] Cappetta, D., De Angelis, A., Ciuffreda, L.P., et al. (2020) Amelioration of Diastolic Dysfunction by Dapagliflozin in a Non-Diabetic Model Involves Coronary Endothelium. Pharmacological Research, 157. Article 104781.
https://doi.org/10.1016/j.phrs.2020.104781
[14] Scisciola, L., Cataldo, V., Taktaz, F., et al. (2022) Anti-Inflammatory Role of SGLT2 Inhibitors as Part of Their Anti-Atherosclerotic Activity: Data from Basic Science and Clinical Trials. Frontiers in Cardiovascular Medicine, 9, Article 1008922.
https://doi.org/10.3389/fcvm.2022.1008922
[15] Venteclef, N., Guglielmi, V., Balse, E., et al. (2015) Human Epicardial Adipose Tissue Induces Fibrosis of the Atrial Myocardium through the Secretion of Adipo-Fibrokines. European Heart Journal, 36, 795-805.
https://doi.org/10.1093/eurheartj/eht099
[16] Iacobellis, G. (2022) Epicardial Adipose Tissue in Contemporary Cardiology. Nature Reviews Cardiology, 19, 593-606.
https://doi.org/10.1038/s41569-022-00679-9
[17] Mullens, W., Martens, P. (2021) Empagliflozin-Induced Changes in Epicardial Fat: The Centerpiece for Myocardial Protection? JACC: Heart Fail, 9, 590-593.
https://doi.org/10.1016/j.jchf.2021.05.006
[18] Salvatore, T., Galiero, R., Caturano, A., et al. (2022) An Overview of the Cardiorenal Protective Mechanisms of SGLT2 Inhibitors. International Journal of Molecular Sciences, 23, 3651-3695.
https://doi.org/10.3390/ijms23073651
[19] Yagi, S., Hirata, Y., Ise, T., et al. (2017) Canagliflozin Reduces Epicardial Fat in Patients with Type 2 Diabetes Mellitus. Diabetology & Metabolic Syndrome, 9, Article 78.
https://doi.org/10.1186/s13098-017-0275-4
[20] Bouchi, R., Terashima, M., Sasahara, Y., et al. (2017) Luseogliflozin Reduces Epicardial Fat Accumulation in Patients with Type 2 Diabetes: A Pilot Study. Cardiovascular Diabetology, 16, Article No. 32.
https://doi.org/10.1186/s12933-017-0516-8
[21] Fukuda, T., Bouchi, R., Terashima, M., et al. (2017) Ipragliflozin Reduces Epicardial Fat Accumulation in Non-Obese Type 2 Diabetic Patients with Visceral Obesity: A Pilot Study. Diabetes Therapy, 8, 851-861.
https://doi.org/10.1007/s13300-017-0279-y
[22] Masson, W., Lavalle-Cobo, A. and Nogueira, J.P. (2021) Effect of SGLT2-Inhibitors on Epicardial Adipose Tissue: A Meta-Analysis. Cells, 10, Article 2150.
https://doi.org/10.3390/cells10082150
[23] De Lorenzi, A.B., Kaplinsky, E., Zambrano, M.R., et al. (2023) Emerging Concepts in Heart Failure Treatment and Management: Focus on SGLT2 Inhibitors in Heart Failure with Preserved Ejection Fraction. Drugs in Context, 12, 1-16.
https://doi.org/10.7573/dic.2022-7-1
[24] Zuurbier, C.J., Baartscheer, A., Schumacher, C.A., et al. (2021) Sodium-Glucose Co-Transporter 2 Inhibitor Empagliflozin Inhibits the Cardiac Na /H Exchanger 1: Persistent Inhibition under Various Experimental Conditions. Cardiovascular Research, 117, 2699-2701.
https://doi.org/10.1093/cvr/cvab129
[25] Trum, M., Riechel, J., Lebek, S., Pabel, S., et al. (2020) Empagliflozin Inhibits Na /H Exchanger Activity in Human Atrial Cardiomyocytes. ESC Heart Failure, 7, 4429-4437.
https://doi.org/10.1002/ehf2.13024
[26] Meagher, P., Adam, M. and Connelly, K. (2020) It’s Not All about the Cardiomyocyte: Fibroblasts, Empagliflozin, and Cardiac Remodelling. Canadian Journal of Cardiology, 36, 464-466.
https://doi.org/10.1016/j.cjca.2019.10.017
[27] Kang, S., Verma, S., Hassanabad, A.F., et al. (2020) Direct Effects of Empagliflozin on Extracellular Matrix Remodelling in Human Cardiac Myofibroblasts: Novel Translational Clues to Explain EMPA-REG OUTCOME Results. Canadian Journal of Cardiology, 36, 543-553.
https://doi.org/10.1016/j.cjca.2019.08.033
[28] Fang, J.C. (2016) Heart Failure with Preserved Ejection Fraction: A Kidney Disorder? Circulation, 134, 435-437.
https://doi.org/10.1161/CIRCULATIONAHA.116.022249
[29] Gori, M., Senni, M., Gupta, D.K., et al. (2014) Association between Renal Function and Cardiovascular Structure and Function in Heart Failure with Preserved Ejection Fraction. European Heart Journal, 35, 3442-3451.
https://doi.org/10.1093/eurheartj/ehu254
[30] Wanner, C., Heerspink, H.J.L., Zinman, B., et al. (2018) Empagliflozin and Kidney Function Decline in Patients with Type 2 Diabetes: A Slope Analysis from the EMPA-REG OUTCOME Trial. Journal of the American Society of Nephrology, 29, 2755-2769.
https://doi.org/10.1681/ASN.2018010103
[31] Hallow, K.M., Helmlinger, G., Greasley, P.J., et al. (2018) Why Do SGLT2 Inhibitors Reduce Heart Failure Hospitalization? A Differential Volume Regulation Hypothesis. Diabetes, Obesity and Metabolism, 20, 479-487.
https://doi.org/10.1111/dom.13126
[32] Karagodin, I., Aba-Omer, O., Sparapani, R., et al. (2017) Aortic Stiffening Precedes Onset of Heart Failure with Preserved Ejection Fraction in Patients with Asymptomatic Diastolic Dysfunction. BMC Cardiovascular Disorders, 17, Article No. 62.
https://doi.org/10.1186/s12872-017-0490-9
[33] Saucedo-Orozco, H., Voorrips, S.N., Yurista, S.R., et al. (2022) SGLT2 Inhibitors and Ketone Metabolism in Heart Failure. Journal of Lipid and Atherosclerosis, 11, 1-19.
https://doi.org/10.12997/jla.2022.11.1.1
[34] Kappel, B.A., Lehrke, M., Schütt, K., et al. (2017) Effect of Empagliflozin on the Metabolic Signature of Patients with Type 2 Diabetes Mellitus and Cardiovascular Disease. Circulation, 136, 969-972.
https://doi.org/10.1161/CIRCULATIONAHA.117.029166
[35] Zelniker, T.A. and Braunwald, E. (2020) Mechanisms of Cardiorenal Effects of Sodium-Glucose Cotransporter 2 Inhibitors: JACC State-of-the-Art Review. Journal of the American College of Cardiology, 75, 422-434.
https://doi.org/10.1016/j.jacc.2019.11.031
[36] Packer, M. (2020) Autophagy Stimulation and Intracellular Sodium Reduction as Mediators of the Cardioprotective Effect of Sodium-Glucose Cotransporter 2 Inhibitors. European Journal of Heart Failure, 22, 618-628.
https://doi.org/10.1002/ejhf.1732
[37] Luo, G., Jian, Z., Zhu, Y., et al. (2019) Sirt1 Promotes Autophagy and Inhibits Apoptosis to Protect Cardiomyocytes from Hypoxic Stress. International Journal of Molecular Medicine, 43, 2033-2043.
https://doi.org/10.3892/ijmm.2019.4125
[38] Jaiswal, A., Jaiswal, V., Ang, S.P., et al. (2023) SGLT2 Inhibitors among Patients with Heart Failure with Preserved Ejection Fraction: A Meta-Analysis of Randomised Controlled Trials. Medicine (Baltimore), 102, e34693.
https://doi.org/10.1097/MD.0000000000034693
[39] 周京敏, 王华, 黎励文. 射血分数保留的心力衰竭诊断与治疗中国专家共识2023 [J]. 中国循环杂志, 2023, 38(4): 375-393.