|
[1]
|
WHO (2023) Influenza (Seasonal) https://www.who.int/news-room/fact-sheets/detail/influenza-(seasonal)
|
|
[2]
|
Li, J., Zhang, Y., Zhang, X., et al. (2022) Influenza and Universal Vaccine Research in China. Viruses, 15, Article 116. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Nypaver, C., Dehlinger, C. and Carter, C. (2021) Influenza and Influenza Vaccine: A Review. Journal of Midwifery & Women’s Health, 66, 45-53. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Krammer, F., Smith, G.J.D., Fouchier, R.A.M., et al. (2018) Influenza. Nature Reviews Disease Primers, 4, Article No. 3. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chen, J., Wang, J., Zhang, J., et al. (2021) Advances in Development and Application of Influenza Vaccines. Frontiers in Immunology, 12, Article 711997. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Nachbagauer, R. and Krammer, F. (2017) Universal Influenza Virus Vaccines and Therapeutic Antibodies. Clinical Microbiology and Infection, 23, 222-8. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Nayak, D., Shivakoti, S., Balogun, R.A., et al. (2013) Structure, Disassembly, Assembly, and Budding of Influenza Viruses. In: Webster, R.G., Arnold, S., Thomas, J., et al., Eds., Textbook of Influenza, John Wiley & Sons, Inc., Hoboken, 35-56. [Google Scholar] [CrossRef]
|
|
[8]
|
Paules, C.I., Marston, H.D., Eisinger, R.W., et al. (2017) The Pathway to a Universal Influenza Vaccine. Immunity, 47, 599-603. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Ng, S., Nachbagauer, R., Balmaseda, A., et al. (2019) Novel Correlates of Protection Against Pandemic H1N1 Influenza A Virus Infection. Nature Medicine, 25, 962-967. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Nuwarda, R.F., Alharbi, A.A. and Kayser, V. (2021) An Overview of Influenza Viruses and Vaccines. Vaccines, 9, Article 1032. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Hutchinson, E.C. (2018) Influenza Virus. Trends in Microbiology, 26, 809-810. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Hai, R., Krammer, F., Tan, G.S., et al. (2012) Influenza Viruses Expressing Chimeric Hemagglutinins: Globular Head and Stalk Domains Derived from Different Subtypes. Journal of Virology, 86, 5774-5781. [Google Scholar] [CrossRef]
|
|
[13]
|
Wu, N.C. and Wilson, I.A. (2020) Influenza Hemagglutinin Structures and Antibody Recognition. Cold Spring Harbor Perspectives in Medicine, 10, a038778. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Wang, W.C., Sayedahmed, E.E., Sambhara, S., et al. (2022) Progress towards the Development of a Universal Influenza Vaccine. Viruses, 14, Article 1684. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Krammer, F. and Palese, P. (2019) Universal Influenza Virus Vaccines That Target the Conserved Hemagglutinin Stalk and Conserved Sites in the Head Domain. The Journal of Infectious Diseases, 219, S62-S67. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Boyoglu-Barnum, S., Hutchinson, G.B., Boyington, J.C., et al. (2020) Glycan Repositioning of Influenza Hemagglutinin Stem Facilitates the Elicitation of Protective Cross-Group Antibody Responses. Nature Communications, 11, Article No. 791. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Eggink, D., Goff, P.H. and Palese, P. (2014) Guiding the Immune Response against Influenza Virus Hemagglutinin toward the Conserved Stalk Domain by Hyperglycosylation of the Globular Head Domain. Journal of Virology, 88, 699-704. [Google Scholar] [CrossRef]
|
|
[18]
|
De Jong, N.M.C., Aartse, A., Van Gils, M.J., et al. (2020) Development of Broadly Reactive Influenza Vaccines by Targeting the Conserved Regions of the Hemagglutinin Stem and Head Domains. Expert Review of Vaccines, 19, 563-577. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Nachbagauer, R. and Palese, P. (2020) Is a Universal Influenza Virus Vaccine Possible? Annual Review of Medicine, 71, 315-327. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Impagliazzo, A., Milder, F., Kuipers, H., et al. (2015) A Stable Trimeric Influenza Hemagglutinin Stem as a Broadly Protective Immunogen. Science, 349, 1301-1306. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Andrews, S.F., Cominsky, L.Y., Shimberg, G.D., et al. (2023) An Influenza H1 Hemagglutinin Stem-Only Immunogen Elicits a Broadly Cross-Reactive B Cell Response in Humans. Science Translational Medicine, 15, eade4976. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Corbett, K.S., Moin, S.M., Yassine, H.M., et al. (2019) Design of Nanoparticulate Group 2 Influenza Virus Hemagglutinin Stem Antigens That Activate Unmutated Ancestor B Cell Receptors of Broadly Neutralizing Antibody Lineages. mBio, 10, e02810-18. [Google Scholar] [CrossRef]
|
|
[23]
|
Darricarrère, N., Qiu, Y., Kanekiyo, M., et al. (2021) Broad Neutralization of H1 and H3 Viruses by Adjuvanted Influenza HA Stem Vaccines in Nonhuman Primates. Science Translational Medicine, 13, eabe5449. [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Liu, W.C., Nachbagauer, R., Stadlbauer, D., et al. (2019) Sequential Immunization with Live-Attenuated Chimeric Hemagglutinin-Based Vaccines Confers Heterosubtypic Immunity against Influenza A Viruses in a Preclinical Ferret Model. Frontiers in Immunology, 10, Article 756. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Nachbagauer, R., Liu, W.C., Choi, A., et al. (2017) A Universal Influenza Virus Vaccine Candidate Confers Protection against Pandemic H1N1 Infection in Preclinical Ferret Studies. NPJ Vaccines, 2, Article No. 26. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Nachbagauer, R., Feser, J., Naficy, A., et al. (2021) A Chimeric Hemagglutinin-Based Universal Influenza Virus Vaccine Approach Induces Broad and Long-Lasting Immunity in a Randomized, Placebo-Controlled Phase I Trial. Nature Medicine, 27, 106-114. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Sun, W., Kirkpatrick, E., Ermler, M., et al. (2019) Development of Influenza B Universal Vaccine Candidates Using the “Mosaic” Hemagglutinin Approach. Journal of Virology, 93, e00333-19. [Google Scholar] [CrossRef]
|
|
[28]
|
Allen, J.D. and Ross, T.M. (2022) Bivalent H1 and H3 COBRA Recombinant Hemagglutinin Vaccines Elicit Seroprotective Antibodies against H1N1 and H3N2 Influenza Viruses from 2009 to 2019. Journal of Virology, 96, e0165221. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Nunez, I.A., Huang, Y. and Ross, T.M. (2021) Next-Generation Computationally Designed Influenza Hemagglutinin Vaccines Protect against H5Nx Virus Infections. Pathogens, 10, Article 1352. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Kanekiyo, M., Joyce, M.G., Gillespie, R.A., et al. (2019) Mosaic Nanoparticle Display of Diverse Influenza Virus Hemagglutinins Elicits Broad B Cell Responses. Nature Immunology, 20, 362-372. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Al-Halifa, S., Gauthier, L., Arpin, D., et al. (2019) Nanoparticle-Based Vaccines against Respiratory Viruses. Frontiers in Immunology, 10, Article 22. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Stadlbauer, D., Zhu, X., Mcmahon, M., et al. (2019) Broadly Protective Human Antibodies That Target the Active Site of Influenza Virus Neuraminidase. Science, 366, 499-504. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Kallewaard, N.L., Corti, D., Collins, P.J., et al. (2016) Structure and Function Analysis of an Antibody Recognizing All Influenza a Subtypes. Cell, 166, 596-608. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Jiao, C., Wang, B., Chen, P., et al. (2023) Analysis of the Conserved Protective Epitopes of Hemagglutinin on Influenza A Viruses. Frontiers in Immunology, 14, Article 1086297. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Corti, D., Cameroni, E., Guarino, B., et al. (2017) Tackling Influenza with Broadly Neutralizing Antibodies. Current Opinion in Virology, 24, 60-69. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Bernstein, D.I., Guptill, J., Naficy, A., et al. (2020) Immunogenicity of Chimeric Haemagglutinin-Based, Universal Influenza Virus Vaccine Candidates: Interim Results of a Randomised, Placebo-Controlled, Phase 1 Clinical Trial. The Lancet Infectious Diseases, 20, 80-91. [Google Scholar] [CrossRef]
|
|
[37]
|
Liu, W.C., Nachbagauer, R., Stadlbauer, D., et al. (2021) Chimeric Hemagglutinin-Based Live-Attenuated Vaccines Confer Durable Protective Immunity against Influenza A Viruses in a Preclinical Ferret Model. Vaccines, 9, Article 40. [Google Scholar] [CrossRef] [PubMed]
|