|
[1]
|
Marshall, N.E., Abrams, B., Barbour, L.A., et al. (2022) The Importance of Nutrition in Pregnancy and Lactation: Lifelong Consequences. American Journal of Obstetrics & Gynecology, 226, 607-632. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Papageorghiou, A.T., Kennedy, S.H., Salomon, L.J., et al. (2018) The INTERGROWTH-21 Fetal Growth Standards: Toward the Global Integration of Pregnancy and Pediatric Care. American Journal of Obstetrics & Gynecology, 218, S630-S640. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Nabhan, A.F. and Abdelmoula, Y.A. (2008) Amniotic Fluid Index versus Single Deepest Vertical Pocket as a Screening Test for Preventing Adverse Pregnancy Outcome. Cochrane Database Syst Rev, No. 3, CD006593. [Google Scholar] [CrossRef]
|
|
[4]
|
Shi, M., Chen, Z., Chen, M., et al. (2021) Continuous Activation of Polymorphonuclear Myeloid-Derived Suppressor Cells during Pregnancy Is Critical for Fetal Development. Cellular & Molecular Immunology, 18, 1692-1707. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Joo, E.H., Kim, Y.R., Kim, N., Jung, J.E., Han, S.H. and Cho, H.Y. (2021) Effect of Endogenic and Exogenic Oxidative Stress Triggers on Adverse Pregnancy Outcomes: Preeclampsia, Fetal Growth Restriction, Gestational Diabetes Mellitus and Preterm Birth. International Journal of Molecular Sciences, 22, Article 10122. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Quan, J.H., Gao, F.F., Ma, T.Z., et al. (2023) Toxoplasma gondii Induces Pyroptosis in Human Placental Trophoblast and Amniotic Cells by Inducing ROS Production and Activation of Cathepsin B and NLRP1/NLRP3/NLRC4/AIM2 Inflammasome. The American Journal of Pathology, 193, 2047-2065. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Menon, R., Boldogh, I., Urrabaz-Garza, R., et al. (2013) Senescence of Primary Amniotic Cells via Oxidative DNA Damage. PLOS ONE, 8, e83416. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Duhig, K., Chappell, L.C. and Shennan, A.H. (2016) Oxidative Stress in Pregnancy and Reproduction. Obstetric Medicine, 9, 113-116. [Google Scholar] [CrossRef]
|
|
[9]
|
Al-Gubory, K.H., Fowler, P.A. and Garrel, C. (2010) The Roles of Cellular Reactive Oxygen Species, Oxidative Stress and Antioxidants in Pregnancy Outcomes. The International Journal of Biochemistry & Cell Biology, 42, 1634-1650. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Sağol, S., Özkinay, E. and Özşener, S. (1999) Impaired Antioxidant Activity in Women with Pre-Eclampsia. International Journal of Gynecology & Obstetrics, 64, 121-127. [Google Scholar] [CrossRef]
|
|
[11]
|
De Oliveira, L.G., Karumanchi, A. and Sass, N. (2010) Preeclampsia: Oxidative Stress, Inflammation and Endothelial Dysfunction. Revista Brasileira de Ginecologia e Obstetrícia, 32, 609-616. [Google Scholar] [CrossRef]
|
|
[12]
|
Menon, R. and Richardson, L.S. (2017) Preterm Prelabor Rupture of the Membranes: A Disease of the Fetal Membranes. Seminars in Perinatology, 41, 409-419. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Moore, T.A., Ahmad, I.M. and Zimmerman, M.C. (2018) Oxidative Stress and Preterm Birth: An Integrative Review. Biological Research for Nursing, 20, 497-512. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ma, Q. (2013) Role of Nrf2 in Oxidative Stress and Toxicity. Annual Review of Pharmacology and Toxicology, 53, 401-426. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Bellezza, I., Giambanco, I., Minelli, A. and Donato, R. (2018) Nrf2-Keap1 Signaling in Oxidative and Reductive Stress. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1865, 721-733. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Kweider, N., Wruck, C.J. and Rath, W. (2013) New Insights into the Pathogenesis of Preeclampsia—The Role of Nrf2 Activators and Their Potential Therapeutic Impact. Geburtshilfe und Frauenheilkunde, 73, 1236-1240. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Kweider, N., Huppertz, B., Kadyrov, M., Rath, W., Pufe, T. and Wruck, C.J. (2014) A Possible Protective Role of Nrf2 in Preeclampsia. Annals of Anatomy, 196, 268-277. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Lu, J., Wang, Z., Cao, J., Chen, Y. and Dong, Y. (2018) A Novel and Compact Review on the Role of Oxidative Stress in Female Reproduction. Reproductive Biology and Endocrinology, 16, Article No. 80. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Hussain, T., Tan, B., Liu, G., et al. (2017) Modulatory Mechanism of Polyphenols and Nrf2 Signaling Pathway in LPS Challenged Pregnancy Disorders. Oxidative Medicine and Cellular Longevity, 2017, Article ID: 8254289. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Hadley, E.E., Richardson, L.S., Torloni, M.R. and Menon, R. (2018) Gestational Tissue Inflammatory Biomarkers at Term Labor: A Systematic Review of Literature. American Journal of Reproductive Immunology, 79, e12776. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Kweider, N., Fragoulis, A., Rosen, C., et al. (2011) Interplay between Vascular Endothelial Growth Factor (VEGF) and Nuclear Factor Erythroid 2-Related Factor-2 (Nrf2): Implications for Preeclampsia. Journal of Biological Chemistry, 286, 42863-42872. [Google Scholar] [CrossRef]
|
|
[22]
|
Pang, H., Huang, Y., Liu, Z., et al. (2011) Effect of Lipoxin A4 on Lipopolysaccharide-Induced Endothelial Hyperpermeability in Human Umbilical Vein Endothelial Cell. Chinese Journal of Obstetrics and Gynecology, 46, 199-204. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Onda, K., Tong, S., Nakahara, A., et al. (2015) Sofalcone Upregulates the Nuclear Factor (Erythroid-Derived 2)-Like 2/Heme Oxygenase-1 Pathway, Reduces Soluble fms-Like Tyrosine Kinase-1, and Quenches Endothelialdys Function: Potential Therapeutic for Preeclampsia. Hypertension, 65, 855-862. [Google Scholar] [CrossRef]
|
|
[24]
|
Chigusa, Y., Kondoh, E., Mogami, H., et al. (2016) Nrf2 Activation Inhibits Thrombin-Induced COX2 and PGE2 in Human Amnion Mesenchymal Cells. Placenta, 46, 112. [Google Scholar] [CrossRef]
|
|
[25]
|
Li, J., Zhou, J., Ye, Y., et al. (2016) Increased Heme Oxygenase-1 and Nuclear Factor Erythroid 2-Related Factor-2 in the Placenta Have a Cooperative Action on Preeclampsia. Gynecologic and Obstetric Investigation, 81, 543-551. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Gurusinghe, S., Cox, A.G., Rahman, R., et al. (2017) Resveratrol Mitigates Tro-Phoblast and Endothelial Dysfunction Partly via Activation of Nuclear Factor Erythroid 2-Related Factor-2. Placenta, 60, 74-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Onda, K., Tong, S., Beard, S., et al. (2017) Proton Pump Inhibitors Decrease Soluble fms-Like Tyrosine Kinase-1 and Soluble Endoglin Secretion, Decrease Hypertension, and Rescue Endothelial Dysfunction. Hypertension, 69, 457-468. [Google Scholar] [CrossRef]
|
|
[28]
|
Hobson, S.R., Gurusinghe, S., Lim, R., et al. (2018) Melatonin Improves Endothelial Function in Vitro and Prolongs Pregnancy in Women with Early-Onset Preeclampsia. Journal of Pineal Research, 65, e12508. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Caldeira-Dias, M., Montenegro, M.F., Bettiol, H., et al. (2019) Resveratrol Improves Endothelial Cell Markers Impaired by Plasma Incubation from Women Who Subsequently Develop Preeclampsia. Hypertension Research, 42, 1166-1174. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Cox, A.G., Gurusinghe, S., Abd Rahman, R., et al. (2019) Sulforaphane Improves Endothelial Function and Reduces Placental Oxidative Stress in Vitro. Pregnancy Hypertension, 16, 1-10. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Knyazev, E.N., Zakharova, G.S., Astakhova, L.A., Tsypina, I.M., Tonevitsky, A.G. and Sukhikh, G.T. (2019) Metabolic Reprogramming of Trophoblast Cells in Response to Hypoxia. Bulletin of Experimental Biology and Medicine, 166, 321-325. [Google Scholar] [CrossRef] [PubMed]
|
|
[32]
|
Feng, H., Wang, L., Zhang, G., Zhang, Z. and Guo, W. (2020) Oxidative Stress Activated by Keap-1/Nrf2 Signaling Pathway in Pathogenesis of Preeclampsia. International Journal of Clinical and Experimental Pathology, 13, 382-392.
|
|
[33]
|
Guo, H., Wang, Y. and Liu, D. (2020) Silibinin Ameliorats H2O2-Induced Cell Apoptosis and Oxidative Stress Response by Activating Nrf2 Signaling in Trophoblast Cells. Acta Histochemica, 122, Article 151620. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Langston-Cox, A., Muccini, A.M., Marshall, S.A., et al. (2020) Sulforaphane Improves Syncytiotrophoblast Mitochondrial Function after in Vitro Hypoxic and Superoxide Injury. Placenta, 96, 44-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
Li, L., Li, H., Xue, J., Chen, P., Zhou, Q. and Zhang, C. (2020) Nanoparticle-Mediated Simultaneous Downregulation of Placental Nrf2 and SFlt1 Improves Maternal and Fetal Outcomes in a Preeclampsia Mouse Model. ACS Biomaterials Science & Engineering, 6, 5866-5873. [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Yang, S., Zhang, R., Xing, B., Zhou, L., Zhang, P. and Song, L. (2020) Astragaloside IV Ameliorates Preeclampsia-Induced Oxidative Stress through the Nrf2/HO-1 Pathway in a Rat Model. American Journal of Physiology-Endo-crinology and Metabolism, 319, e904-e911. [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Zuo, J. and Jiang, Z. (2020) Melatonin Attenuates Hypertension and Oxidative Stress in a Rat Model of L-NAME-Induced Gestational Hypertension. Vascular Medicine, 25, 295-301. [Google Scholar] [CrossRef]
|
|
[38]
|
Chigusa, Y., Tatsumi, K., Kondoh, E., et al. (2012) Decreased Lectin-Like Oxidized LDL Receptor 1 (LOX-1) and Low Nrf2 Activation in Placenta Are Involved in Preeclampsia. The Journal of Clinical Endocrinology & Metabolism, 97, e1862-e1870. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Tong, S., Kaitu’u-Lino, T.J., Onda, K., et al. (2015) Heme Oxygenase-1 Is Not Decreased in Preeclamptic Placenta and Does Not Negatively Regulate Placental Soluble fms-Like Tyrosine Kinase-1 or Soluble Endoglin Secretion. Hypertension, 66, 1073-1081. [Google Scholar] [CrossRef]
|
|
[40]
|
Nezu, M., Souma, T., Yu, L., et al. (2017) Nrf2 Inactivation Enhances Placental Angiogenesis in a Preeclampsia Mouse Model and Improves Maternal and Fetal Outcomes. Science Signaling, 10, eaam5711. [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Acar, N., Soylu, H., Edizer, I., et al. (2014) Expression of Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) and Peroxiredoxin 6 (Prdx6) Proteins in Healthy and Pathologic Placentas of Human and Rat. Acta Histochemica, 116, 1289-1300. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Kweider, N., Huppertz, B., Wruck, C.J., et al. (2012) A Role for Nrf2 in Redox Signalling of the Invasive Extravillous Trophoblast in Severe Early Onset IUGR Associated with Preeclampsia. PLOS ONE, 7, e47055. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Wu, J., He, Z., Gao, Y., Zhang, G., Huang, X. and Fang, Q. (2017) Placental NFE2L2 Is Discordantly Activated in Monochorionic Twins with Selective Intrauterine Growth Restriction and Possibly Regulated by Hypoxia. Free Radical Research, 51, 351-359. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Yan, E., Zhang, J., Han, H., et al. (2019) Curcumin Alleviates IUGR Jejunum Damage by Increasing Antioxidant Capacity through Nrf2/Keap1 Pathway in Growing Pigs. Animals (Basel), 10, Article 41. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Niu, Y., He, J., Ahmad, H., et al. (2019) Dietary Curcumin Supplementation Increases Antioxidant Capacity, Upregulates Nrf2 and Hmox1 Levels in the Liver of Piglet Model with Intrauterine Growth Retardation. Nutrients, 11, Article 2978. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Kweider, N., Huppertz, B., Rath, W., et al. (2017) The Effects of Nrf2 Deletion on Placental Morphology and Exchange Capacity in the Mouse. The Journal of Maternal-Fetal & Neonatal Medicine, 30, 2068-2073. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Jiang, W., Wan, L., Chen, P. and Lu, W. (2021) Docosahexaenoic Acid Activates the Nrf2 Signaling Pathway to Alleviate Impairment of Szui(2020) Excessive Reactive Oxygen Species Induce Apoptosis via the APPL1-Nrf2/HO-1 Antioxidant Signalling Pathway in Trophoblasts with Missed Abortion. Life Sciences, 254, Article 117781. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Khadzhieva, M.B., Lutcenko, N.N., Volodin, I.V., Morozova, K.V. and Salnikova, L.E. (2014) Association of Oxida-tive Stress-Related Genes with Idiopathic Recurrent Miscarriage. Free Radical Research, 48, 534-541. [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Luan, X., Yan, Y., Zheng, Q., et al. (2020) Excessive Reactive Oxygen Species Induce Apoptosis via the APPL1-Nrf2/HO-1 Antioxidant Signalling Pathway in Trophoblasts with Missed Abortion. Life Sciences, 254, Article 117781. [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Zhang, Y., Zhao, W., Xu, H., et al. (2019) Hyperandrogenism and Insulin Resistance-Induced Fetal Loss: Evidence for Placental Mitochondrial Abnormalities and Elevated Reactive Oxygen Species Production in Pregnant Rats That Mimic the Clinical Features of Polycystic Ovary Syndrome. The Journal of Physiology, 597, 3927-3950. [Google Scholar] [CrossRef]
|
|
[51]
|
Hu, M., Zhang, Y., Guo, X., et al. (2019) Hyperandrogenism and Insulin Resistance Induce Gravid Uterine Defects in Association with Mitochondrial Dysfunction and Aberrant Reactive Oxygen Species Production. American Journal of Physiology-Endocrinology and Metabolism, 316, e794-e809. [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Sussan, T.E., Sudini, K., Talbot Jr., C.C., et al. (2017) Nrf2 Regulates Gene-Environment Interactions in an Animal Model of Intrauterine Inflammation: Implications for Preterm Birth and Prematurity. Scientific Reports, 7, Article No. 40194. [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Kadam, L., Gomez-Lopez, N., Mial, TN., et al. (2017) Rosiglitazone Regulates TLR4 and Rescues HO-1 and NRF2 Expression in Myometrial and Decidual Macrophages in Inflammation-Induced Preterm Birth. Reproductive Sciences, 24, 1590-1599. [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Zhang, W., Li, M., Li, N. and Liu, Z. (2020) Regulation of Keap-1/Nrf2 Signaling Pathway Is Activated by Oxidative Stress in Patients with Premature Rupture of Membranes. Medical Science Monitor, 26, e921757. [Google Scholar] [CrossRef]
|
|
[55]
|
Mogami, H., Keller, P.W., Shi, H. and Word, R.A. (2014) Effect of Thrombin on Human Amnion Mesenchymal Cells, Mouse Fetal Membranes, and Preterm Birth. Journal of Biological Chemistry, 289, 13295-13307. [Google Scholar] [CrossRef]
|
|
[56]
|
Chigusa, Y., Kishore, A.H., Mogami, H. and Word, R.A. (2016) Nrf2 Activation Inhibits Effects of Thrombin in Human Amnion Cells and Thrombin-Induced Preterm Birth in Mice. The Journal of Clinical Endocrinology & Metabolism, 101, 2612-2621. [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Gusar, V.A., Timofeeva, A.V., Chagovets, V.V., et al. (2022) Interrelation between miRNAs Expression Associated with Redox State Fluctuations, Immune and Inflammatory Response Activation, and Neonatal Outcomes in Complicated Pregnancy, Accompanied by Placental Insufficiency. Antioxidants (Basel), 12, Article 6. [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Duan, Y., Sun, F., Que, S., Li, Y., Yang, S. and Liu, G. (2018) Prepregnancy Maternal Diabetes Combined with Obesity Impairs Placental Mitochondrial Function Involving Nrf2/ARE Pathway and Detrimentally Alters Metabolism of Offspring. Obesity Research & Clinical Practice, 12, 90-100. [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Manoharan, B., Bobby, Z., Dorairajan, G., et al. (2019) Increased Placental Expressions of Nuclear Factor Erythroid 2-Related Factor 2 and Antioxidant Enzymes in Gestational Diabetes: Protective Mechanisms against the Placental Oxidative Stress? European Journal of Obstetrics & Gynecology and Reproductive Biology, 238, 78-85. [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Zhang, C., Yang, Y., Chen, R., et al. (2019) Aberrant Expression of Oxidative Stress Related Proteins Affects the Pregnancy Outcome of Gestational Diabetes Mellitus Patients. American Journal of Translational Research, 11, 269-279.
|
|
[61]
|
He, M.-Y., Wang, G., Han, S.-S., et al. (2016) Nrf2 Signalling and Autophagy Are Involved in Diabetes Mellitus-In-duced Defects in the Development of Mouse Placenta. Open Biology, 6, Article 160064. [Google Scholar] [CrossRef] [PubMed]
|
|
[62]
|
McAninch, D., Bianco-Miotto, T., Gatford, K.L., et al. (2020) The Metabolic Syndrome in Pregnancy and Its Association with Child Telomere Length. Diabetologia, 63, 2140-2149. [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Zheng, J., Liu, X., Zheng, B., et al. (2020) Maternal 25-Hydroxyvitamin D Deficiency Promoted Metabolic Syndrome and Downregulated Nrf2/CBR1 Pathway in Offspring. Frontiers in Pharmacology, 11, Article 97. [Google Scholar] [CrossRef] [PubMed]
|
|
[64]
|
Sun, C.C., Lai, Y.N., Wang, W.H., et al. (2020) Metformin Ameliorates Gestational Diabetes Mellitus-Induced Endothelial Dysfunction via Downregulation of P65 and Upregulation of Nrf2. Frontiers in Pharmacology, 11, Article 575390. [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Song, H., Xu, Y., Yang, X., Rong, X., Wang, Y. and Wei, N. (2019) Tertiary Butylhydroquinone Alleviates Gestational Diabetes Mellitus in C57BL/KsJ-Lep db/ Mice by Suppression of Oxidative Stress. Journal of Cellular Biochemistry, 120, 15310-15319. [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Srám, R.J., Binková, B., Dejmek, J. and Bobak, M. (2005) Ambient Air Pollution and Pregnancy Outcomes: A Review of the Literature. Environmental Health Perspectives, 113, 375-382. [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Nagiah, S., Phulukdaree, A., Naidoo, D., et al. (2015) Oxidative Stress and Air Pollution Exposure during Pregnancy: A Molecular Assessment. Human & Experimental Toxicology, 34, 838-847. [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Chiapella, G., Flores-Martín, J., Ridano, M.E., et al. (2013) The Organophosphate Chlorpyrifos Disturbs Redox Balance and Triggers Antioxidant Defense Mechanisms in JEG-3 Cells. Placenta, 34, 792-798. [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Chiapella, G., Genti-Raimondi, S. and Magnarelli, G. (2014) Placental Oxidative Status in Rural Residents Environmentally Exposed to Organophosphates. Environmental Toxicology and Pharmacology, 38, 220-229. [Google Scholar] [CrossRef] [PubMed]
|
|
[70]
|
Suter, M.A., Aagaard, K.M., Coarfa, C., et al. (2019) Association between Elevated Placental Polycyclic Aromatic Hydrocarbons (PAHs) and PAH-DNA Adducts from Superfund Sites in Harris County, and Increased Risk of Preterm Birth (PTB). Biochemical and Biophysical Research Communications, 516, 344-349. [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Ponniah, M., Billett, E.E. and de Girolamo, L.A. (2015) Bisphenol A Increases BeWo Trophoblast Survival in Stress-Induced Paradigms through Regulation of Oxidative Stress and Apoptosis. Chemical Research in Toxicology, 28, 1693-1703. [Google Scholar] [CrossRef] [PubMed]
|
|
[72]
|
Park, H.-R. and Loch-Caruso, R. (2014) Protective Effect of Nuclear Factor E2-Related Factor 2 on Inflammatory Cytokine Response to Brominated Diphenyl Ether-47 in the HTR-8/SVneo Human First Trimester Extravillous Trophoblast Cell Line. Toxicology and Applied Pharmacology, 281, 67-77. [Google Scholar] [CrossRef] [PubMed]
|
|
[73]
|
Harris, C. and Hansen, J.M. (2012) Nrf2-Mediated Resistance to Oxidant-Induced Redox Disruption in Embryos. Birth Defects Research Part B: Developmental and Reproductive Toxicology, 95, 213-218. [Google Scholar] [CrossRef] [PubMed]
|
|
[74]
|
Dong, Q., Hou, H., Wu, J. and Chen, Y. (2016) The Nrf2-ARE Pathway Is Associated with Schisandrin B Attenuating Benzo(a)pyrene-Induced HTR Cells Damages in Vitro. Environmental Toxicology, 31, 1439-1449. [Google Scholar] [CrossRef] [PubMed]
|
|
[75]
|
Zhao, F., Lei, F., Yan, X., Zhang, S., Wang, W. and Zheng, Y. (2018) Protective Effects of Hydrogen Sulfide against Cigarette Smoke Exposure-Induced Placental Oxidative Damage by Alleviating Redox Imbalance via Nrf2 Pathway in Rats. Cellular Physiology and Biochemistry, 48, 1815-1828. [Google Scholar] [CrossRef] [PubMed]
|
|
[76]
|
Qi, L., Jiang, J., Zhang, J., Zhang, L. and Wang, T. (2020) Curcumin Protects Human Trophoblast HTR8/SVneo Cells from H2O2-Induced Oxidative Stress by Activating Nrf2 Signaling Pathway. Antioxidants (Basel), 9, Article 121. [Google Scholar] [CrossRef] [PubMed]
|
|
[77]
|
Chigusa, Y., Kawasaki, K., Kondoh, E., et al. (2016) Simvastatin Inhibits Oxidative Stress via the Activation of Nuclear Factor Erythroid 2-Related Factor 2 Signaling in Trophoblast Cells. Journal of Obstetrics and Gynaecology Research, 42, 36-43. [Google Scholar] [CrossRef] [PubMed]
|
|
[78]
|
Sagrillo-Fagundes, L., Bienvenue-Pariseault, J. and Vaillancourt, C. (2019) Melatonin: The Smart Molecule That Differentially Modulates Autophagy in Tumor and Normal Placental Cells. PLOS ONE, 14, e0202458. [Google Scholar] [CrossRef] [PubMed]
|
|
[79]
|
Manuel, C.R., Charron, M.J., Ashby Jr., C.R. and Reznik, S.E. (2018) Saturated and Unsaturated Fatty Acids Differentially Regulate in Vitro and ex Vivo Placental Antioxidant Capacity. American Journal of Reproductive Immunology, 80, e12868. [Google Scholar] [CrossRef] [PubMed]
|
|
[80]
|
Ono, K., Furugen, A., Kurosawa, Y., et al. (2019) Analysis of the Effects of Polyunsaturated Fatty Acids on Transporter Expressions Using a PCR Array: Induction of XCT/SLC7A11 in Human Placental BeWo Cells. Placenta, 75, 34-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[81]
|
Brewer, A.C., Mustafi, S.B., Murray, T.V.A., Rajasekaran, N.S. and Benjamin, I.J. (2012) Reductive Stress Linked to Small HSPs, G6PD, and Nrf2 Pathways in Heart Disease. Antioxidants & Redox Signaling, 18, 1114-1127. [Google Scholar] [CrossRef] [PubMed]
|
|
[82]
|
Menon, R. and Peltier, M.R. (2020) Novel Insights into the Regulatory Role of Nuclear Factor (Erythroid-Derived 2)-Like 2 in Oxidative Stress and Inflammation of Human Fetal Membranes. International Journal of Molecular Sciences, 21, Article 6139. [Google Scholar] [CrossRef] [PubMed]
|