非洲爪蟾的碱性螺旋-环-螺旋转录因子的鉴定与初步分析
Genome-Wide Survey, Identification and Preliminary Analysis of Xenopus Laevis Bhlh Transcription Factors
DOI: 10.12677/hjbm.2011.11002, PDF, HTML,  被引量 下载: 4,150  浏览: 15,138  科研立项经费支持
作者: 刘武艺*
关键词: 转录因子基因本体论基因组分析
Transcription Factor; Gene Ontology; Genome-wide analysis
摘要: 碱性螺旋-环-螺旋(bHLH)转录因子在真核生物的生长发育相关的基因表达调控过程中发挥着重要的作用。本文根据现有非洲爪蟾基因组数据,利用生物信息学方法初步鉴定爪蟾的bHLH基因,收集了其结构、家族分类和GO功能富集等信息,进行了初步分析。结果,在非洲爪蟾基因组数据库中共发现98个bHLH转录因子,它们可以分别归到6大组(A-F)的32个亚家族中。通过基因本体论(GO)的富集分布统计发现有42个显著富集分布的GO注释语句,其中转录调控活性(GO:0030528)、转录调控(GO:0045449)、DNA结合(GO:0003677)、转录(GO:0006350)和DNA依赖的转录调控(GO:0006355)等出现的频率很高,表明这些GO术语是爪蟾bHLH基因的共同功能;此外,许多爪蟾bHLH基因在一些重要的发育或生理过程(如肌肉器官和眼的发育)中发挥着重要的调控作用。这些研究结果将有助于进一步的研究。
Abstract: The basic helix-loop-helix (bHLH) transcription factors play essential roles in the regulation of eukaryotic growth and development and gene transcription. In this study, we conducted a genome-wide survey using the Xenopus Laevis ongoing genome project databases, and identified 98 bHLH sequences in Xenopus Laevis genome. Phylogenetic analyses revealed those bHLH genes belong to 32 families in the super-groups (A-F) in this research. Gene Ontology (GO) enrichment statistics showed 42 significant GO annotations counted in frequency. Statistical analysis of the Gene Ontology annotations showed that these 98 bHLH proteins tend to be related to transcription regulator activity (GO:0030528), regulation of transcription (GO:0045449), DNA binding (GO:0003677), transcription (GO:0006350), DNA-dependent regulation of transcription (GO:0006355), expected from the common GO categories of transcriptional factors. A number of bHLH genes play regulation significant role in special development or physiology processes, such as muscle organ development and eye development. This preliminary study provides useful information for further researches on Xenopus Laevis.
文章引用:刘武艺. 非洲爪蟾的碱性螺旋-环-螺旋转录因子的鉴定与初步分析[J]. 生物医学, 2011, 1(1): 6-16. http://dx.doi.org/10.12677/hjbm.2011.11002

参考文献

[1] T. J. Boggon, W. S. Shan, S. Santagata, et al. Implication of tubby proteins as transcription factors by structure-based functional analysis. Science, 1999, 286(5447): 2119-2125.
[2] N. M. Luscombe, S. E. Austin, H. M. Berman, et al. An overview of the structures of protein—DNA complexes. Genome Biol, 2000, 1(1): 1-37.
[3] J. L. Riechmann, J. Heard, G. Martin, et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science, 2000, 290(5499): 2105-2110.
[4] W. R. Atchley, W. M. Fitch. A natural classification of the basic helix-loop-helix class of transcription factors. Proceedings of the National Academy of Sciences of the USA, 1997, 21(7): 5172-5176.
[5] M. E. Massari, C. Murre. Helix-loop-helix proteins: Regulators of transcription in eucaryotic organisms. Molecular and Cellular Biology, 2000, 20(2): 429-440.
[6] V. Ledent, M. Vervoort. The basic helix-loop-helix protein family: Comparative genomics and phylogenetic analysis. Genome Res., 2001, 11(5): 754-770.
[7] J. D. Stevens, E. H. Roalson, and M. K. Skinner. Phylogenetic and expression analysis of the basic helix-loop-helix transcription factor gene family: Genomic approach to cellular differentiation. Differentiation, 2008, 76(9): 1006-1022.
[8] L. Carretero-Paulet, A. Galstyan, I. Roig-Villanova, et al. Genome-wide classification and evolutionary analysis of the bHLH family of transcription factors in arabidopsis, poplar, rice, moss, and algae. Plant Physiology, 2010, 153(3): 1398–1412.
[9] C. Murre, C. P. Mc, and D. Baltimore. A new DNA binding and dimerizing motif in immunoglobulin enhancer binding, daughterless, MyoD, and Myc proteins. Cell, 1989, 56(5): 777-783.
[10] W. R. Atchley, W. Terhalle, and A. Dress. Positional dependence, cliques, and predictive motifs in the bHLH protein domain. Journal of Molecular Evolution, 1999, 48(5): 501-516.
[11] V. Ledent, O. Paquet, and M. Vervoort. Phylogenetic analysis of the human basic helix-loop-helix proteins. Genome Biol., 2002, 3(6): 301-3018.
[12] G. Toledo-Ortiz, E. Huq, and P. H. Quail. The Arabidopsis basic/helix-loop-helix transcription factor family. Plant Cell, 2003, 15(8): 1749-1770.
[13] J. Li, Q. Liu, M. Qiu, et al. Identification and analysis of the mouse basic/helix-loop-helix transcription factor family. Biochemical and Biophysical Research Communications, 2006, 350(3): 648-656.
[14] E. Simionato, V. Ledent, G. Richards, et al. Origin and diver- sification of the basic helix-loop-helix gene family in metazoans: Insights from comparative genomics. BMC Evolutionary Biology, 2007, 7(1): 33.
[15] Y. Wang, K. P. Chen, Q. Yao, et al. The basic helix-loop- helix transcription factor family in Bombyx mori. Development Genes and Evolution, 2007, 217(10): 715-723.
[16] Y. Wang, K. Chen, Q. Yao, et al. Phylogenetic analysis of zebrafish basic helix-loop-helix transcription factors. Journal of Molecular Evolution, 2009, 68(6): 629-640.
[17] W. Y. Liu, C. J. Zhao. Genome-wide identification and analysis of the chicken basic helix-loop-helix factors. Comparative and Functional Genomics, 2010: Article ID 682095.
[18] X. Zheng, Y. Wang, Q. Yao, et al. A genomewide survey on basic helix-loop-helix transcription factors in rat and mouse. Mamm Genome, 2009, 20(4): 236-246.
[19] U. Hellsten, R. M. Harland, M. J. Gilchrist, et al. The genome of the Western clawed frog Xenopus tropicalis. Science, 2010, 328(5978): 633-636.
[20] J. B. Bowes, K. A. Snyder, E. Segerdell, et al. Xenbase: a Xenopus biology and genomics resource. Nucleic Acids Research, 2008, 36(1): D761-D767.
[21] J. D. Thompson, T. J. Gibson, F. Plewniak, et al. The ClustalX windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 1997, 25(24): 4876-4882.