|
[1]
|
Kunadian, V., Chieffo, A., Camici, P.G., et al. (2020) An EAPCI Expert Consensus Document on Ischaemia with Non-Obstructive Coronary Arteries in Collaboration with European Society of Cardiology Working Group on Coronary Pathophysiology & Microcirculation Endorsed by Coronary Vasomotor Disorders International Study Group. European Heart Journal, 41, 3504-3520. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bairey Merz, C.N., Pepine, C.J., Walsh, M.N., et al. (2017) Ischemia and No Obstructive Coronary Artery Disease (INOCA) Developing Evidence-Based Therapies and Research Agenda for the Next Decade. Circulation, 135, 1075-1092. [Google Scholar] [CrossRef]
|
|
[3]
|
汪静, 李思进. 2020年全国核医学现状普查结果简报[J]. 中华核医学与分子影像杂志, 2020, 40(12): 747-749.
|
|
[4]
|
Fu, B., Wei, X., Lin, Y., et al. (2022) Pathophysiologic Basis and Diagnostic Approaches for Ischemia with Non-Obstructive Coronary Arteries: A Literature Review. Frontiers in Cardiovascular Medicine, 9, Article 731059. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
He, M., Han, W., Shi, C., et al. (2023) A Comparison of Dynamic SPECT Coronary Flow Reserve with TIMI Frame Count in the Treatment of Non-Obstructive Epicardial Coronary Patients. Clinical Interventions in Aging, 18, 1831-1839. [Google Scholar] [CrossRef]
|
|
[6]
|
Verna, E., Ghiringhelli, S., Provasoli, S., et al. (2018) Epicardial and Microvascular Coronary Vasomotor Dysfunction and Its Relation to Myocardial Ischemic Burden in Patients with Non-Obstructive Coronary Artery Disease. Journal of Nuclear Cardiology, 25, 1760-1769. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Lampas, E., Syrmali, K., Nikitas, G., et al. (2023) Five-Year Morbidity and Mortality of Patients with Ischemia with Non-Obstructive Coronary Artery Disease and Myocardial Single-Photon Emission Computed Tomography Perfusion Defects. Revista Portuguesa De Cardiologia, 42, 519-524. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告2022》要点解读[J]. 中国心血管杂志, 2023, 28(4): 297-312.
|
|
[9]
|
Camici, P.G., D’Amati, G. and Rimoldi, O. (2015) Coronary Microvascular Dysfunction: Mechanisms and Functional Assessment. Nature Reviews Cardiology, 12, 48-62. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Beltrame, J.F., Crea, F., Kaski, J.C., et al. (2017) International Standardization of Diagnostic Criteria for Vasospastic Angina. European Heart Journal, 38, 2565-2568.
|
|
[11]
|
Real, C., Morales, T. and Viana-Tejedor, A. (2021) An Unusual Call From the Urology Ward. Circulation, 144, 324-327. [Google Scholar] [CrossRef]
|
|
[12]
|
Mejía-Rentería, H., Van Der Hoeven, N., Van De Hoef, T.P., et al. (2017) Targeting the Dominant Mechanism of Coronary Microvascular Dysfunction with Intracoronary Physiology Tests. The International Journal of Cardiovascular Imaging, 33, 1041-1059. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Shimokawa, H., Suda, A., Takahashi, J., et al. (2021) Clinical Characteristics and Prognosis of Patients with Microvascular Angina: An International and Prospective Cohort Study by the Coronary Vasomotor Disorders International Study (COVADIS) Group. European Heart Journal, 42, 4592-4600. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Radico, F., Zimarino, M., Fulgenzi, F., et al. (2018) Determinants of Long-Term Clinical Outcomes in Patients with Angina But without Obstructive Coronary Artery Disease: A Systematic Review and Meta-Analysis. European Heart Journal, 39, 2135-2146. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Oikonomou, E., Theofilis, P., Lampsas, S., et al. (2022) Current Concepts and Future Applications of Non-Invasive Functional and Anatomical Evaluation of Coronary Artery Disease. Life, 12, Article 1803. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Mandell, B.F. (2021) We Have a Greater Understanding of ‘Cardiac Syndrome X,’ But Questions Remain. Cleveland Clinic Journal of Medicine, 88, 532-533. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Sueda, S. (2020) Clinical Usefulness of Myocardial Scintigraphy in Patients with Vasospastic Angina. Journal of Cardiology, 75, 494-499. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Dikic, A.D., Dedic, S., Jovanovic, I., et al. (2024) Noninvasive Evaluation of Dynamic Microvascular Dysfunction in Ischemia and No Obstructive Coronary Artery Disease Patients with Suspected Vasospasm. Journal of Cardiovascular Medicine, 25, 123-131. [Google Scholar] [CrossRef]
|
|
[19]
|
AlBadri, A., Wei, J., Mehta, P.K., et al. (2017) Acetylcholine versus Cold Pressor Testing for Evaluation of Coronary Endothelial Function. PLOS ONE, 12, e0172538. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Gobbo, M., Meretta, A., Sciancalepore, M., et al. (2021) INOCA: Unraveling the Pathophysiological Mechanisms, Non-Invasively. European Heart Journal—Cardiovascular Imaging, 22, Jeab111.049. [Google Scholar] [CrossRef]
|
|
[21]
|
Alama, M., Labos, C., Emery, H., et al. (2018) Diagnostic and Prognostic Significance of Transient Ischemic Dilation (TID) in Myocardial Perfusion Imaging: A Systematic Review and Meta-Analysis. Journal of Nuclear Cardiology, 25, 724-737. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
鹿存芝, 骆秉铨, 王亚楠, 等. 核素TID比值诊断非梗阻性冠心病心肌缺血[J]. 标记免疫分析与临床, 2021, 28(2): 243-245, 250.
|
|
[23]
|
Chen, L., Zhang, M., Jiang, J., et al. (2021) Coronary Microvascular Dysfunction: An Important Interpretation on the Clinical Significance of Transient Ischemic Dilation of the Left Ventricle on Myocardial Perfusion Imaging. Journal of X-Ray Science Technology, 29, 347-360. [Google Scholar] [CrossRef]
|
|
[24]
|
Juweid, M.E., Alhouri, A., Baniissa, B., et al. (2021) Transient Ischemic Dilatation with Adenosine 99m Tc-Sestamibi Stress: Prognostic Significance in Patients with Normal Myocardial Perfusion. Annals of Nuclear Medicine, 35, 569-579. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Pantely, G.A., Malone, S.A., Rhen, W.S., et al. (1990) Regeneration of Myocardial Phosphocreatine in Pigs Despite Continued Moderate Ischemia. Circulation Research, 67, 1481-1493. [Google Scholar] [CrossRef]
|
|
[26]
|
Schock, A., Haller, P., Kellner, C., et al. (2023) Prognostic Value of Transthoracic Echocardiography in the Evaluation of Suspected Myocardial Infarction. European Heart Journal, 44, ehad655.1237. [Google Scholar] [CrossRef]
|
|
[27]
|
Hausvater, A., Smilowitz, N., Espinosa, D., et al. (2018) Left Ventricular Wall Motion Findings in Myocardial Infarction with Nonobstructive Coronary Artery Disease (Minoca). Journal of the American College of Cardiology, 71, A135. [Google Scholar] [CrossRef]
|
|
[28]
|
Nakajima, K., Taki, J., Kawano, M., et al. (2001) Diastolic Dysfunction in Patients with Systemic Sclerosis Detected by Gated Myocardial Perfusion SPECT: An Early Sign of Cardiac Involvement. Journal of Nuclear Medicine, 42, 183-188.
|
|
[29]
|
Gimelli, A., Liga, R., Pasanisi, E.M., et al. (2017) Myocardial Ischemia in the Absence of Obstructive Coronary Lesion: the Role of Post-Stress Diastolic Dysfunction in Detecting Early Coronary Atherosclerosis. Journal of Nuclear Cardiology, 24, 1542-1550. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Nitta, K., Kurisu, S., Sumimoto, Y., et al. (2020) Diagnostic Value of Peak Filling Rate Derived From ECG-Gated Myocardial Perfusion SPECT for Detecting Myocardial Ischaemia in Patients with Non-Obstructive Coronary Artery Disease. Acta Cardiologica, 75, 37-41. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
张娟, 姚稚明, 郭悦, 等. 门控心肌灌注显像左室舒张功能对不良心脏事件的预测价值[J]. 中华核医学与分子影像杂志, 2017, 37(6): 326-330.
|
|
[32]
|
Sugihara, H., Yonekura, Y., Kataoka, K., et al. (2001) Estimation of Coronary Flow Reserve with the Use of Dynamic Planar and SPECT Images of Tc-99m Tetrofosmin. Journal of Nuclear Cardiology, 8, 575-579. [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Hsu, B., Hu, L.H., Yang, B.H., et al. (2017) SPECT Myocardial Blood Flow Quantitation toward Clinical Use: A Comparative Study with 13 N-Ammonia PET Myocardial Blood Flow Quantitation. European Journal of Nuclear Medicine Molecular Imaging, 44, 117-128. [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Dickson, J.C., Armstrong, I.S., Gabiña, P.M., et al. (2023) EANM Practice Guideline for Quantitative SPECT-CT. European Journal of Nuclear Medicine Molecular Imaging, 50, 980-995. [Google Scholar] [CrossRef] [PubMed]
|
|
[35]
|
陈炜佳, 石洪成. 碲锌镉心脏专用SPECT的临床应用进展[J]. 国际放射医学核医学杂志, 2020, 44(6): 394-398.
|
|
[36]
|
薛冰冰, 李剑明. SPECT定量心肌血流及冠状动脉血流储备的研究进展[J]. 国际放射医学核医学杂志, 2019, 43(2): 160-165.
|
|
[37]
|
Poitrasson-Rivière, A., Moody, J.B., Renaud, J.M., et al. (2023) Integrated Myocardial Flow Reserve (IMFR) Assessment: Optimized PET Blood Flow Quantification for Diagnosis of Coronary Artery Disease. European Journal of Nuclear Medicine Molecular Imaging, 51, 136-146. [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Agostini, D., Roule, V., Nganoa, C., et al. (2018) First Validation of Myocardial Flow Reserve Assessed by Dynamic 99m Tc-Sestamibi CZT-SPECT Camera: Head to Head Comparison with 15 O-Water PET and Fractional Flow Reserve in Patients with Suspected Coronary Artery Disease. The WATERDAY Study. European Journal of Nuclear Medicine Molecular Imaging, 45, 1079-1090. [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Nkoulou, R., Fuchs, T.A., Pazhenkottil, A.P., et al. (2016) Absolute Myocardial Blood Flow and Flow Reserve Assessed by Gated SPECT with Cadmium-Zinc-Telluride Detectors Using 99mTc-Tetrofosmin: Head-to-Head Comparison with 13N-Ammonia PET. Journal of Nuclear Medicine, 57, 1887-1892. [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
De Souza, A.C.D.A., Harms, H.J., Martell, L., et al. (2022) Accuracy and Reproducibility of Myocardial Blood Flow Quantification by Single Photon Emission Computed Tomography Imaging in Patients with Known or Suspected Coronary Artery Disease. Circulation: Cardiovascular Imaging, 15, e013987. [Google Scholar] [CrossRef]
|
|
[41]
|
Bailly, M., Thibault, F., Metrard, G., et al. (2023) Precision of Myocardial Blood Flow and Flow Reserve Measurement during CZT SPECT Perfusion Imaging Processing: Intra-and Interobserver Variability. Journal of Nuclear Medicine, 64, 260-265. [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Bailly, M., Thibault, F., Courtehoux, M., et al. (2021) Impact of Attenuation Correction for CZT-SPECT Measurement of Myocardial Blood Flow. Journal of Nuclear Cardiology, 28, 2560-2568. [Google Scholar] [CrossRef] [PubMed]
|
|
[43]
|
Kaminek, M., Havel, M., Kincl, V., et al. (2024) the Prognostic Value of CZT SPECT Stress Myocardial Blood Flow (MBF) Quantification—Opportunity for Stress-First/Stress-Only Protocol. European Journal of Nuclear Medicine Molecular Imaging, 51, 344-345. [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Zhang, H., Caobelli, F., Che, W., et al. (2023) the Prognostic Value of CZT SPECT Myocardial Blood Flow (MBF) Quantification in Patients with Ischemia and No Obstructive Coronary Artery Disease (INOCA): A Pilot Study. European Journal of Nuclear Medicine Molecular Imaging, 50, 1940-1953. [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Li, L., Pang, Z., Wang, J., et al. (2023) Prognostic Value of Myocardial Flow Reserve Measured with CZT Cardiac-Dedicated SPECT Low-Dose Dynamic Myocardial Perfusion Imaging in Patients with INOCA. Journal of Nuclear Cardiology, 30, 2578-2592. [Google Scholar] [CrossRef] [PubMed]
|
|
[46]
|
Kopeva, K., Grakova, E., Maltseva, A., et al. (2023) Coronary Microvascular Dysfunction: Features and Prognostic Value. Journal of Clinical Medicine, 12, Article 2964. [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Moody, J.B., Poitrasson-Rivière, A., Renaud, J.M., et al. (2023) Integrated Myocardial Flow Reserve (IMFR) Assessment: Diffuse Atherosclerosis and Microvascular Dysfunction Are More Strongly Associated with Mortality than Focally Impaired Perfusion. European Journal of Nuclear Medicine Molecular Imaging, 51, 123-135. [Google Scholar] [CrossRef] [PubMed]
|