|
[1]
|
Abdel-Malek, Z., Jordan, C., Ho, T., et al. (2020) The Enigma and Challenges of Vitiligo Pathophysiology and Treatment. Pigment Cell & Melanoma Research, 33, 778-787. [Google Scholar] [CrossRef] [PubMed]
|
|
[2]
|
Bergqvist, C. and Ezzedine, K. (2020) Vitiligo: A Review. Dermatology, 236, 571-592. [Google Scholar] [CrossRef] [PubMed]
|
|
[3]
|
Bergqvist, C. and Ezzedine, K. (2021) Vitiligo: A Focus on Pathogenesis and Its Therapeutic Implications. The Journal of Dermatology, 48, 252-270. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Boniface, K. and Seneschal, J. (2019) Vitiligo as a Skin Memory Disease: The Need for Early Intervention with Immunomodulating Agents and a Maintenance Therapy to Target Resident Memory T Cells. Experimental Dermatology, 28, 656-661. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Chaudhary, A., Patel, M. and Singh, S. (2022) Current Debates on Etiopathogenesis and Treatment Strategies for Vitiligo. Current Drug Targets, 23, 1219-1238. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Cheuk, S., Schlums, H., Gallais Serezal, I., et al. (2017) CD49a Expression Defines Tissue-Resident CD8( ) T Cells Poised for Cytotoxic Function in Human Skin. Immunity, 46, 287-300. [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Dwivedi, M., Laddha, N., Arora, P., et al. (2013) Decreased Regulatory T-Cells and CD4( )/CD8( ) Ratio Correlate with Disease Onset and Progression in Patients with Generalized Vitiligo. Pigment Cell & Melanoma Research, 26, 586-591. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Gholijani, N., Yazdani, M. and Dastgheib, L. (2020) Predominant Role of Innate Pro-Inflammatory Cytokines in Vitiligo Disease. Archives of Dermatological Research, 312, 123-131. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Hojman, L., Cabrera, R., Karsulovic, C., et al. (2021) The Role of CXCL10 and IL-18 as Markers of Repigmentation Response in Nonsegmental Vitiligo Treated with Narrowband UVB Phototherapy: A Prospective Cohort Study. Journal of Investigative Dermatology, 141, 1833-1836.E1. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Howell, M.D., Kuo, F.I. and Smith, P.A. (2019) Targeting the Janus Kinase Family in Autoimmune Skin Diseases. Frontiers in Immunology, 10, Article No. 2342. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Kumar Jha, A., Sonthalia, S., Lallas, A., et al. (2018) Dermoscopy in Vitiligo: Diagnosis and Beyond. International Journal of Dermatology, 57, 50-54. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Kussainova, A., Kassym, L., Akhmetova, A., et al. (2020) Vitiligo and Anxiety: A Systematic Review and Meta-Analysis. PLOS ONE, 15, e0241445. [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Lin, F., Hu, W., Xu, W., et al. (2021) CXCL9 as a Key Biomarker of Vitiligo Activity and Prediction of the Success of Cultured Melanocyte Transplantation. Scientific Reports, 11, Article No. 18298. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Migayron, L., Boniface, K. and Seneschal, J. (2020) Vitiligo, from Physiopathology to Emerging Treatments: A Review. Dermatologic Therapy (Heidelb), 10, 1185-1198. [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Mosenson, J., Flood, K., Klarquist, J., et al. (2014) Preferential Secretion of Inducible HSP70 by Vitiligo Melanocytes under Stress. Pigment Cell & Melanoma Research, 27, 209-220. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Nigam, P., Patra, P., Khodiar, P., et al. (2011) A Study of Blood CD3 , CD4 , and CD8 T Cell Levels and CD4 :CD8 Ratio in Vitiligo Patients. Indian Journal of Dermatology, Venereology and Leprology, 77, 111. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Qian, Y., Liu, X., Sun, H., et al. (2022) Urinary Proteomics Analysis of Active Vitiligo Patients: Biomarkers for Steroid Treatment Efficacy Prediction and Monitoring. Frontiers in Molecular Biosciences, 9, Article ID: 761562. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Raam, L., Kaleviste, E., Šunina, M., et al. (2018) Lymphoid Stress Surveillance Response Contributes to Vitiligo Pathogenesis. Frontiers in Immunology, 9, Article No. 2707. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Bleuel, R., et al. (2018) Therapeutic Management of Vitiligo. Journal Der Deutschen Dermatologischen Gesellschaft, 16, 1309-1313. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Said-Fernandez, S., Sanchez-Domínguez, C., Salinas-Santander, M., et al. (2021) Novel Immunological and Genetic Factors Associated with Vitiligo: A Review. Experimental and Therapeutic Medicine, 21, Article No. 312. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Speeckaert, R., Dugardin, J., Lambert, J., et al. (2018) Critical Appraisal of the Oxidative Stress Pathway in Vitiligo: A Systematic Review and Meta-Analysis. Journal of the European Academy of Dermatology and Venereology, 32, 1089-1098. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Tomaszewska, K., Kozåowska, M., Kaszuba, A., et al. (2020) Increased Serum Levels of IFN-γ, IL-1β, and IL-6 in Patients with Alopecia Areata and Nonsegmental Vitiligo. Oxidative Medicine and Cellular Longevity, 2020, Article ID: 5693572. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Tulic, M., Cavazza, E., Cheli, Y., et al. (2019) Innate Lymphocyte-Induced CXCR3B-Mediated Melanocyte Apoptosis Is a Potential Initiator of T-Cell Autoreactivity in Vitiligo. Nature Communications, 10, Article No. 2178. [Google Scholar] [CrossRef] [PubMed]
|