|
[1]
|
姚玉璧, 郑绍忠, 杨扬, 等. 中国太阳能资源评估及其利用效率研究进展与展望[J]. 太阳能学报, 2022, 43(10): 524-535.
|
|
[2]
|
张云龙, 陈新亮, 周忠信, 等. 晶体硅太阳电池研究进展[J]. 太阳能学报, 2021, 42(10): 49-60.
|
|
[3]
|
陈俊帆, 赵生盛, 高天, 等. 高效单晶硅太阳电池的最新进展及发展趋势[J]. 材料导报, 2019, 33(1): 110-116.
|
|
[4]
|
任程超, 周佳凯, 张博宇, 等. 基于隧穿氧化物钝化接触的高效晶体硅太阳电池的研究现状与展望[J]. 物理学报, 2021, 70(17): 294-304.
|
|
[5]
|
Yan, D., Cuevas, A., Michel, J.I., et al. (2021) Polysilicon Passivated Junctions: The Next Technology for Silicon Solar Cells? Joule, 5, 811-828. [Google Scholar] [CrossRef]
|
|
[6]
|
Richter, A., Hermle, M. and Glunz, S.W. (2013) Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells. IEEE Journal of Photovoltaics, 3, 1184-1191. [Google Scholar] [CrossRef]
|
|
[7]
|
Feldmann, F., Bivour, M., Reichel, C., et al. (2014) Passivated Rear Contacts for High-Efficiency n-Type Si Solar Cells Providing High Interface Passivation Quality and Excellent Transport Characteristics. Solar Energy Materials and Solar Cells, 120, 270-274. [Google Scholar] [CrossRef]
|
|
[8]
|
Richter, A., Müller, R., Benick, J., et al. (2021) Design Rules for High-Efficiency Both-Sides-Contacted Silicon Solar Cells with Balanced Charge Carrier Transport and Recombination Losses. Nature Energy, 6, 429-438. [Google Scholar] [CrossRef]
|
|
[9]
|
Steinkemper, H., Feldmann, F., Bivour, M., et al. (2015) Theoretical Investigation of Carrier-Selective Contacts Featuring Tunnel Oxides by Means of Numerical Device Simulation. Energy Procedia, 77, 195-201. [Google Scholar] [CrossRef]
|
|
[10]
|
Wagner, H., Dastgheib-Shirazi, A., Min, B., et al. (2016) Optimizing Phosphorus Diffusion for Photovoltaic Applications: Peak Doping, Inactive Phosphorus, Gettering, and Contact Formation. Journal of Applied Physics, 119, Article 185704. [Google Scholar] [CrossRef]
|
|
[11]
|
Nogay, G., Stuckelberger, J., Wyss, P., et al. (2017) Interplay of Annealing Temperature and Doping in Hole Selective Rear Contacts Based on Silicon-Rich Silicon-Carbide Thin Films. Solar Energy Materials and Solar Cells, 173, 18-24. [Google Scholar] [CrossRef]
|
|
[12]
|
Nemeth, B., Young, D.L., Page, M.R., et al. (2016) Polycrystalline Silicon Passivated Tunneling Contacts for High Efficiency Silicon Solar Cells. Journal of Materials Research, 31, 671-681. [Google Scholar] [CrossRef]
|
|
[13]
|
He, J., Wang, W., Cai, L., et al. (2020) Stable Electron-Selective Contacts for Crystalline Silicon Solar Cells Enabling Efficiency over 21.6%. Advanced Functional Materials, 30, Article 2005554. [Google Scholar] [CrossRef]
|
|
[14]
|
Tao, Y., Upadhyaya, V., Jones, K., et al. (2016) Tunnel Oxide Passivated Rear Contact for Large Area n-Type Front Junction Silicon Solar Cells Providing Excellent Carrier Selectivity. AIMS Materials Science, 3, 180-189. [Google Scholar] [CrossRef]
|
|
[15]
|
Feldmann, F., Schön, J., Niess, J., et al. (2019) Studying Dopant Diffusion from Poly-Si Passivating Contacts. Solar Energy Materials and Solar Cells, 200, Article 109978. [Google Scholar] [CrossRef]
|
|
[16]
|
Wu, H., Nguyen, H.T., Yan, D., et al. (2020) Micro-Photoluminescence Studies of Shallow Phosphorus Diffusions below Polysilicon Passivating Contacts. Solar Energy Materials and Solar Cells, 218, Article 110780. [Google Scholar] [CrossRef]
|
|
[17]
|
Himpsel, F.J., Mcfeely, F.R., Taleb-Ibrahimi, A., et al. (1988) Microscopic Structure of the SiO2/Si Interface. Physical Review B, 38, 6084-6096. [Google Scholar] [CrossRef]
|
|
[18]
|
Grunthaner, F.J. and Grunthaner, P.J. (1986) Chemical and Electronic Structure of the SiO2/Si Interface. Jet Propulsion, 86, 65-153. [Google Scholar] [CrossRef]
|
|
[19]
|
Hirose, K., Nohira, H., Azuma, K., et al. (2007) Photoelectron Spectroscopy Studies of SiO2/Si Interfaces. Progress in Surface Science, 82, 3-54. [Google Scholar] [CrossRef]
|
|
[20]
|
Jahanshah Rad, Z., Lehtiö, J.P., Chen, K., et al. (2022) Effects of Post Oxidation of SiO2/Si Interfaces in Ultrahigh Vacuum below 450˚C. Vacuum, 202, Article 111134. [Google Scholar] [CrossRef]
|
|
[21]
|
Stegemann, B., Gad, K.M., Balamou, P., et al. (2017) Ultra-Thin Silicon Oxide Layers on Crystalline Silicon Wafers: Comparison of Advanced Oxidation Techniques with Respect to Chemically Abrupt SiO2/Si Interfaces with Low Defect Densities. Applied Surface Science, 395, 78-85. [Google Scholar] [CrossRef]
|
|
[22]
|
Grant, N.E. and Mcintosh, K.R. (2009) Passivation of a (100) Silicon Surface by Silicon Dioxide Grown in Nitric Acid. IEEE Electron Device Letters, 30, 922-924. [Google Scholar] [CrossRef]
|
|
[23]
|
Fukaya, Y., Yanase, T., Kubota, Y., et al. (2010) Low Temperature Fabrication of 5-10 nm SiO2/Si Structure Using Advanced Nitric Acid Oxidation of Silicon (NAOS) Method. Applied Surface Science, 256, 5610-5613. [Google Scholar] [CrossRef]
|
|
[24]
|
Stegemann, B., Balamou, P., Lussky, T., et al. (2018) Passivation of Crystalline Silicon Wafers by Ultrathin Oxide Layers: Comparison of Wet-Chemical, Plasma and Thermal Oxidation Techniques. 2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC), Waikoloa, 10-15 June 2018, 2779-2782. [Google Scholar] [CrossRef]
|
|
[25]
|
Gao, M., Kumar, V., Schoenfeld, W., et al. (2023) UV-Ozone Oxide for Surface Clean, Passivation, and Tunneling Contact Applications of Silicon Solar Cells. IEEE Journal of Photovoltaics, 13, 385-390. [Google Scholar] [CrossRef]
|
|
[26]
|
Tong, H., Liao, M., Zhang, Z., et al. (2018) A Strong-Oxidizing Mixed Acid Derived High-Quality Silicon Oxide Tunneling Layer for Polysilicon Passivated Contact Silicon Solar Cell. Solar Energy Materials and Solar Cells, 188, 149-155. [Google Scholar] [CrossRef]
|
|
[27]
|
Baek, J.H., Jeong, M.J., Hu, W., et al. (2019) Passivation Improvement of Nitric Acid Oxide by Ozone Post-Treatment for Tunnel Oxide Passivated Contacts Silicon Solar Cells. Applied Surface Science, 489, 330-335. [Google Scholar] [CrossRef]
|
|
[28]
|
Huang, Y., Liao, M., Wang, Z., et al. (2020) Ultrathin Silicon Oxide Prepared by In-Line Plasma-Assisted N2O Oxidation (PANO) and the Application for N-Type Polysilicon Passivated Contact. Solar Energy Materials and Solar Cells, 208, Article 110389. [Google Scholar] [CrossRef]
|
|
[29]
|
Van Der Vossen, R., Feldmann, F., Moldovan, A., et al. (2017) Comparative Study of Differently Grown Tunnel Oxides for p-Type Passivating Contacts. Energy Procedia, 124, 448-454. [Google Scholar] [CrossRef]
|
|
[30]
|
Chandra Mandal, N., Biswas, S., Acharya, S., et al. (2020) Study of the Properties of SiOx Layers Prepared by Different Techniques for Rear Side Passivation in TOPCon Solar Cells. Materials Science in Semiconductor Processing, 119, Article 105163. [Google Scholar] [CrossRef]
|
|
[31]
|
Feldmann, F., Bivour, M., Reichel, C., et al. (2013) A Passivated Rear Contact for High-Efficiency n-Type Silicon Solar Cells Enabling High Vocs and FF > 82%. 28th European PV Solar Energy Conference and Exhibition, Paris, 30 September-4 October 2013, 988-992.
|
|
[32]
|
Benick, J., Hoex, B., Van de Sanden, M.C.M., et al. (2008) High Efficiency N-Type Si Solar Cells on Al2O3-Passivated Boron Emitters. Applied Physics Letters, 92, 3-6. [Google Scholar] [CrossRef]
|
|
[33]
|
Glunz, S.W., Feldmann, F., Richter, A., et al. (2015) The Irresistible Charm of a Simple Current Flow Pattern-25% with a Solar Cell Featuring a Full-Area Back Contact. 31st European Photovoltaic Solar Energy Conference, Hamburg, 259-263. https://userarea.eupvsec.org/proceedings/EU-PVSEC-2015/2BP.1.1/
|
|
[34]
|
Larionova, Y., Turcu, M., Reiter, S., et al. (2017) On the Recombination Behavior of p -Type Polysilicon on Oxide Junctions Deposited by Different Methods on Textured and Planar Surfaces. Physica Status Solidi, 214, Article 1700058. [Google Scholar] [CrossRef]
|
|
[35]
|
宁波材料所开发出效率25.53%的新型隧穿氧化硅钝化接触(TOPCon)晶硅太阳电池[EB/OL]. https://mp.weixin.qq.com/s/ObynSRtllRz-chTKg4rmMw, 2024-04-29
|
|
[36]
|
26.4%! Jinkosolar 182TOPCon Battery Conversion Efficiency Reached a New High. https://www.jinkosolar.com/site/newsdetail/1387
|
|
[37]
|
Feldmann, F., Bivour, M., Reichel, C., et al. (2014) Tunnel Oxide Passivated Contacts as an Alternative to Partial Rear Contacts. Solar Energy Materials and Solar Cells, 131, 46-50. [Google Scholar] [CrossRef]
|
|
[38]
|
Feldmann, F., Simon, M., Bivour, M., et al. (2014) Efficient Carrier-Selective p-and n-Contacts for Si Solar Cells. Solar Energy Materials and Solar Cells, 131, 100-104. [Google Scholar] [CrossRef]
|
|
[39]
|
Tao, Y., Madani, K., Cho, E., et al. (2017) High-Efficiency Selective Boron Emitter Formed by Wet Chemical Etch-Back for N-Type Screen-Printed Si Solar Cells. Applied Physics Letters, 110, Article 021101. [Google Scholar] [CrossRef]
|
|
[40]
|
Lancaster, K., Groβer, S., Feldmann, F., et al. (2016) Study of Pinhole Conductivity at Passivated Carrier-Selected Contacts of Silicon Solar Cells. Energy Procedia, 92, 116-121. [Google Scholar] [CrossRef]
|
|
[41]
|
Peibst, R., Römer, U., Larionova, Y., et al. (2016) Working Principle of Carrier Selective Poly-Si/c-Si Junctions: Is Tunnelling the Whole Story? Solar Energy Materials and Solar Cells, 158, 60-67. [Google Scholar] [CrossRef]
|
|
[42]
|
Tetzlaff, D., Krügener, J., Larionova, Y., et al. (2017) A Simple Method for Pinhole Detection in Carrier Selective POLO-Junctions for High Efficiency Silicon Solar Cells. Solar Energy Materials and Solar Cells, 173, 106-110. [Google Scholar] [CrossRef]
|
|
[43]
|
Wietler, T.F., Tetzlaff, D., Krügener, J., et al. (2017) Pinhole Density and Contact Resistivity of Carrier Selective Junctions with Polycrystalline Silicon on Oxide. Applied Physics Letters, 110, Article 253902. [Google Scholar] [CrossRef]
|
|
[44]
|
杨航, 赵建红, 张瑾, 等. 钙钛矿太阳能电池中电子传输层研究进展[J]. 云南大学学报(自然科学版), 2023, 45(2): 465-474.
|
|
[45]
|
Cheng, W., Zhou, R., Peng, S., et al. (2024) Research on Passivation of Perovskite Layer in Perovskite Solar Cells. Materials Today Communications, 38, Article 107879. [Google Scholar] [CrossRef]
|
|
[46]
|
Xiong, S., Chu, J. and Bao, Q. (2023) Modulation of Perovskite Surface Energetics for State-of-the-Art Solar Cells. Solar RRL, 7, Article 2300458. [Google Scholar] [CrossRef]
|
|
[47]
|
Liu, N., Wang, L., Xu, F., et al. (2020) Recent Progress in Developing Monolithic Perovskite/Si Tandem Solar Cells. Frontiers in Chemistry, 8, Article 603375. [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Zhu, Z., Mao, K. and Xu, J. (2021) Perovskite Tandem Solar Cells with Improved Efficiency and Stability. Journal of Energy Chemistry, 58, 219-232. [Google Scholar] [CrossRef]
|