|
[1]
|
The Lancet (2024) What Next in Parkinson’s Disease? The Lancet, 403, 219. [Google Scholar] [CrossRef]
|
|
[2]
|
Webb, J.L., Ravikumar, B., et al. (2003) Alpha-Synuclein Is Degraded by both Autophagy and the Proteasome. Journal of Biological Chemistry, 278, 25009-25013. [Google Scholar] [CrossRef]
|
|
[3]
|
Xu, H. and Ren, D. (2015) Lysosomal Physiology. Annual Review of Physiology, 77, 57-80. [Google Scholar] [CrossRef] [PubMed]
|
|
[4]
|
Butor, C., Griffiths, G., et al. (1995) Co-Localization of Hydrolytic Enzymes with Widely Disparate pH Optima: Implications for the Regulation of Lysosomal pH. Journal of Cell Science, 108, 2213-2219. [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Mindell, J.A. (2012) Lysosomal Acidification Mechanisms. Annual Review of Physiology, 74, 69-86. [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Hu, M.Q., et al. (2024) The Ion Channels of Endomembranes. Physiological Reviews, 104, 1335-1385.
|
|
[7]
|
Hu, M., Li, P., Wang, C., et al. (2022) Parkinson’s Disease-Risk Protein TMEM175 Is a Proton-Activated Proton Channel in Lysosomes. Cell, 185, 2292-2308.E20. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Gibb, W.R. and Lees, A.J. (1988) The Relevance of the Lewy Body to the Pathogenesis of Idiopathic Parkinson’s Disease. Journal of Neurology, Neurosurgery & Psychiatry, 51, 745-752. [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Tozzi, A., Sciaccaluga, M., Loffredo, V., et al. (2021) Dopamine-Dependent Early Synaptic and Motor Dysfunctions Induced by α-Synuclein in the Nigrostriatal Circuit. Brain, 144, 3477-3491. [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Calo, L., Wegrzynowicz, M., Santivanez-Perez, J., et al. (2016) Synaptic Failure and Alpha-Synuclein. Movement Disorders, 31, 169-177. [Google Scholar] [CrossRef] [PubMed]
|
|
[11]
|
Schweighauser, M., et al. (2020) Structures of α-Synuclein Filaments from Multiple System Atrophy. Nature, 585, 464-469. [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Morris, H.R., Spillantini, M.G., Sue, C.M., et al. (2024) The Pathogenesis of Parkinson’s Disease. The Lancet, 403, 293-304. [Google Scholar] [CrossRef]
|
|
[13]
|
Guo, Y., Sun, Y., Song, Z., et al. (2021) Genetic Analysis and Literature Review of SNCA Variants in Parkinson’s Disease. Frontiers in Aging Neuroscience, 13, Article ID: 648151. [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Ben-Shlomo, Y., Darweesh, S., Llibre-Guerra, J., et al. (2024) The Epidemiology of Parkinson’s Disease. The Lancet, 403, 283-292. [Google Scholar] [CrossRef]
|
|
[15]
|
Horowitz, M., Braunstein, H., Zimran, A., et al. (2022) Lysosomal Functions and Dysfunctions: Molecular and Cellular Mechanisms Underlying Gaucher Disease and Its Association with Parkinson Disease. Advanced Drug Delivery Reviews, 187, Article ID: 114402. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Navarro-Romero, A., Montpeyo, M. and Martinez-Vicente, M. (2020) The Emerging Role of the Lysosome in Parkinson’s Disease. Cells, 9, Article No. 2399. [Google Scholar] [CrossRef] [PubMed]
|
|
[17]
|
Vogiatzi, T., Xilouri, M., et al. (2008) Wild Type Alpha-Synuclein Is Degraded by Chaperone-Mediated Autophagy and Macroautophagy in Neuronal Cells. Journal of Biological Chemistry, 283, 23542-23556. [Google Scholar] [CrossRef]
|
|
[18]
|
Dehay, B., Martinez-Vicente, M., et al. (2013) Lysosomal Impairment in Parkinson’s Disease. Movement Disorders, 28, 725-732. [Google Scholar] [CrossRef] [PubMed]
|
|
[19]
|
Dehay, B., Ramirez, A., et al. (2012) Loss of P-Type ATPase ATP13A2/PARK9 Function Induces General Lysosomal Deficiency and Leads to Parkinson Disease Neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 109, 9611-9616. [Google Scholar] [CrossRef] [PubMed]
|
|
[20]
|
Schultheis, P.J., Fleming, S., et al. (2013) Atp13a2-Deficient Mice Exhibit Neuronal Ceroid Lipofuscinosis, Limited α-Synuclein Accumulation and Age-Dependent Sensorimotor Deficits. Human Molecular Genetics, 22, 2067-2082. [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Wallings, R., Connor-Robson, N. and Wade-Martins, R. (2019) LRRK2 Interacts with the Vacuolar-Type H -ATPase Pump A1 Subunit to Regulate Lysosomal Function. Human Molecular Genetics, 28, 2696-2710. [Google Scholar] [CrossRef] [PubMed]
|
|
[22]
|
Henry, A.G., Aghamohammadzadeh, S., Samaroo, H., et al. (2015) Pathogenic LRRK2 Mutations, through Increased Kinase Activity, Produce Enlarged Lysosomes with Reduced Degradative Capacity and Increase ATP13A2 Expression. Human Molecular Genetics, 24, 6013-6028. [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Dehay, B., BovE, J., et al. (2010) Pathogenic Lysosomal Depletion in Parkinson’s Disease. Journal of Neuroscience, 30, 12535-12544. [Google Scholar] [CrossRef]
|
|
[24]
|
Vest, R.T., Chou, C.C., Zhang, H., et al. (2022) Small Molecule C381 Targets the Lysosome to Reduce Inflammation and Ameliorate Disease in Models of Neurodegeneration. Proceedings of the National Academy of Sciences of the United States of America, 119, E2121609119. [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Rahman, N., Ramos-Espiritu, L., Milner, T.A., et al. (2016) Soluble Adenylyl Cyclase Is Essential for Proper Lysosomal Acidification. Journal of General Physiology, 148, 325-339. [Google Scholar] [CrossRef] [PubMed]
|
|
[26]
|
Bonam, S.R., Wang, F. and Muller, S. (2019) Lysosomes as a Therapeutic Target. Nature Reviews Drug Discovery, 18, 923-948. [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Tong, B.C., Huang, A.S., Wu, A.J., et al. (2022) Tetrandrine Ameliorates Cognitive Deficits and Mitigates Tau Aggregation in Cell and Animal Models of Tauopathies. Journal of Biomedical Science, 29, Article No. 85. [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
Yao, X.C., Xue, X., Zhang, H.T., et al. (2019) Pseudoginsenoside-F11 Alleviates Oligomeric β-Amyloid-Induced Endosome-Lysosome Defects in Microglia. Traffic, 20, 61-70. [Google Scholar] [CrossRef] [PubMed]
|
|
[29]
|
Chin, M., Ang, K.H., Davies, J., et al. (2022) Phenotypic Screening Using High-Content Imaging to Identify Lysosomal pH Modulators in a Neuronal Cell Model. ACS Chemical Neuroscience, 13, 1505-1516. [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
Bordi, M., Berg, M.J., Mohan, P.S., et al. (2016) Autophagy Flux in CA1 Neurons of Alzheimer Hippocampus: Increased Induction Overburdens Failing Lysosomes to Propel Neuritic Dystrophy. Autophagy, 12, 2467-2483. [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Lo, C.H., Skarica, M., Mansoor, M., et al. (2021) Astrocyte Heterogeneity in Multiple Sclerosis: Current Understanding and Technical Challenges. Frontiers in Cellular Neuroscience, 15, Article ID: 726479. [Google Scholar] [CrossRef] [PubMed]
|