森林与径流关系的模拟与分析
Modeling and Analysis of the Forest-Runoff Relations
摘要: 为了揭示森林与径流关系的空间变化及原因,用生物物理/动态植被模型SSiB4/TRIFFID与TOPMODEL的耦合模型SSiB4T/TRIFFID模拟了西南山区长江上游的梭磨河流域不同气温下植被演替及蒸发与径流的动态响应过程,分析了气温变化对森林–径流关系的影响及机理。控制试验模拟结果表明:1) 由于亚高山区气温低雨季冠层湿润分数高,在蒸散三个分量中植被蒸腾最小,森林蒸腾与草和灌木差异小,流域蒸散在植被从C3草到灌木演替阶段增加并达到最大值,在植被从灌木到森林演替阶段减小甚至低于裸土蒸发,因此增加了流域径流量。2) 温度较控制试验减小1.5℃,由于森林冠层蒸散减小幅度大于草和灌木使森林增加径流的作用增加。3) 气温较控制试验增加2.0℃,森林冠层截留蒸发较草和灌木明显增加,蒸腾也高于草和灌木,森林对径流的影响已不明显。当气温较控制试验增加5℃,森林蒸腾和冠层截留蒸发较草和灌木明显增加,森林覆盖流域总蒸发最大,森林减小了径流量。随着山区海拔高度下降,森林对径流的影响将发生从增加径流量到对径流量影响不大和减小径流量的变化。由于森林冠层温度和冠层阻力对气温变化比草和灌木敏感,导致对于相同的气温减小(增加)幅度森林冠层截留蒸发和蒸腾的减小(增加)幅度均大于草和灌木,通过这种机制气温变化造成森林与径流的关系发生变化。
Abstract: In order to reveal the spatial variation of the relationship between forests and runoff and explore the mechanism numerical simulations of the responses of evaporation and runoff to the dynamic changes of vegetation over the Suomo basin (a tributary of the Yangtze River in the mountain region of southwestern China) are conducted under different temperature change scenarios by using the coupled model SSiB4T/ TRIFFID (Plant Dynamic Vegetation Model TRIFFID and TOPMODEL are integrated into the land surface model SSiB4). The impacts of temperature changes on forest-runoff relationship and the mechanism are ana-lyzed. The results of control test show that in wet season canopy wetness fraction is high in the subalpine re-gion of southwestern China duo to low temperature. Transpiration is the minimum among three components of evapotranspiration. Transpiration of forests is no significant difference with transpiration of grass and shrub. The evapotranspiration of the basin increases and reaches its maximal value during the period of C3 grass succession into shrub and then decreases during the period of shrub succession into forest and reaches its minimal value which may be less than bare soil evaporation. As a result forests increase the total runoff of the basin. A decrease in temperature by 1.5°C enhances such effect of forests duo to more decrease in water loss through canopy interception evaporation and transpiration of forests. An increase in temperature by 2°C enhances the rate of transpiration and evaporation of forests more than that of grass and shrub. As a result forests have no significant effect on runoff. Temperature rises to 5°C will cause forests turn to reduce runoff duo to more significant increase in water loss through canopy interception evaporation and transpiration of forests. As elevation decreases (temperature increases) in the mountain region of southwestern China the role of forests to increase runoff will change to be that forests have no significant effect on runoff and forests reduce runoff. The results also indicate that canopy temperature and canopy resistance of forests are more sensitive to temperature changes than that of grass and shrub. As a result canopy interception evaporation and transpiration of forests are more sensitive to temperature changes which cause that more significant increase or decrease in forest canopy evapotranspiration with temperature increase or decrease than that of grass and shrub. Through such mechanism changes of temperature cause the changes of forest-runoff relationship.
文章引用:邓慧平. 森林与径流关系的模拟与分析[J]. 地理科学研究, 2012, 1(2): 31-38. http://dx.doi.org/10.12677/GSER.2012.12004

参考文献

[1] 毕国昌. 关于西南高山林区林型分类的几个问题[J]. 林业科学, 1964, 9(1): 86-92.
[2] 马雪华. 四川米亚罗地区高山冷杉林水文作用的研究[J]. 林业科学, 1987, 23(3): 253-264.
[3] 马雪华. 岷江上游森林的采伐对河流流量和泥沙悬移质的影响[J]. 自然资源, 1980, 4(3): 78-87.
[4] 张发会, 陈林武, 吴雪仙等. 长江上游低山丘陵区小流域森林植被变化对径流影响分析[J]. 四川林业科技, 2007, 28(4): 49-53.
[5] K. J. Beven. Rainfall-runoff modeling. New York: John Wiley & Sons, Ltd., 2000: 187-199.
[6] 邓慧平, 李秀彬, 陈军锋等. 流域土地覆被变化水文效应的模拟[J]. 地理学报, 2003, 58(1): 53-62.
[7] P. J. Sellers, Y. Mintz, Y. C. Sud, et al. A simple biosphere model (SiB) for use within general circulation models. Journal of the Atmospheric Science, 1986, 43(6): 505-531.
[8] Y. Xue, P. J. Sellers, J. L. Kinter, et al. A simplified biosphere model for global climate studies. Journal of Climate, 1991, 4(3): 345-364.
[9] P. J. Sellers, D. A. Randall, G. J. Collatz, et al. A revised land surface parameterization (SiB2) for atmospheric GCMs. Journal of Climate, 1996, 9(4): 676-705.
[10] P. J. Sellers, R. E. Dickinson, D. A. Randall, et al. Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 1997, 275(5299): 502-509.
[11] X. Zhan, Y. Xue and G. J. Collatz. An analytical approach for estimating CO2 and heat fluxes over the Amazonian region. Ecological Modeling, 2003, 162(1-2): 97-117.
[12] P. M. Cox, R. A. Betts, C. Jones, et al. Acceleration of global warming duo to carbon-cycle feedbacks in a coupled climate model. Nature, 2000, 408: 184-187.
[13] P. M. Cox. Description of the “TRIFFID” dynamic global vege- tation model. Hadley Centre Technical Note 24, Hadley Centre, Met Office, Exeter, 2001.
[14] Y. Xue, H. Deng and P. M. Cox. Testing a coupled biophysical/ dynamic vegetation model (SSiB-4/TRIFFID) in different cli- mate zones using satellite-derived and ground-measured data. Joint Session 5, Land-Atmosphere Interactions: Coupled Model Development, Data Assimilation, Predictability, and Process Studies (Joint with 18th Conference on Climate Variability and Change and 20th Conference on Hydrology), the 86th AMS Annual Meeting, Atlanta, 2006.
[15] 邓慧平. 流域植被水文效应的动态模拟[J]. 长江流域资源与环境, 2010, 19(12): 1404-1409.
[16] 邓慧平. 流域植被覆盖变化对径流和蒸发影响的模拟与分析[J]. 地球科学期刊, 2012, 2(1): 34-41.
[17] 邓慧平, 刘惠民, 肖燕. 流域植被与土壤导水系数对青弋江流域水文影响的数值试验[J]. 水资源与水工程学报, 2012, 23(3): 4-9.
[18] 邓慧平. 梭磨河流域植被和水文对气候变化的响应[J]. 地球科学期刊, 2012, in press.
[19] 邓慧平. 气温变化对西南山区流域森林水文效应影响的模拟[J]. 生态环境学报, 2012, 21(4): 601-605.
[20] 邓慧平, 孙菽芬. 地形指数模型TOPMODEL与陆面模式SSiB的耦合及在流域尺度上的数值模拟[J]. 中国科学: 地球科学, 2012, 42(7): 1083-1093.
[21] 邓慧平, 李秀彬, 张明等. 气候与地表覆被变化对梭磨河流域水文影响的分析[J]. 地理科学, 2001, 21(6): 493-497.