MP  >> Vol. 2 No. 3 (August 2012)

    噪声环境下二比特量子态远程制备
    Remote Preparation of Two Qubit State in Noisy Environments

  • 全文下载: PDF(1206KB) HTML    PP.49-54   DOI: 10.12677/MP.2012.23009  
  • 下载量: 2,840  浏览量: 9,519   国家科技经费支持

作者:  

张延亮,康国栋,王晓波,周清平:吉首大学软件与服务外包学院

关键词:
量子噪声Lindblad主方程量子态远程制备保真度Quantum Noise; Lindblad Master Equation; Remote State Preparation; Fidelity

摘要:

提出利用两对非最大纠缠态作为量子通信通道实现二比特量子态的远程态制备方案,并使用量子纠缠态密度矩阵的Lindblad主方程推导了量子纠缠态的时间演化,研究了噪声条件下三种量子纠缠通道对二比特量子态远程制备保真度的影响。结果表明,噪声条件下由|01>|10>基构成的量子通道比由|00>|11>基构成的量子通道更具有保护远程制备量子态保真度的能力,由这两组基构成的混合量子通道得到的保真度正比于上述两种情况保真度之积,其保真度的值介于两者之间。

A scheme is proposed for the remote preparation of a two qubit quantum state by using two nonmaximally entangled states as the quantum channel. The effects of the environment noise on the quantum channels are considered, in which the time-evolution is ruled by the master equations of the density matrices in the Lindblad form. We investigated the influence of environment noise on the fidelity of the remote state preparation based on three types of quantum channels. It is found that the output state of remote state preparation, as time goes on, has a higher fidelity in the case of the quantum channel consists of |01> and |10> basis than that of |00> and |11> basis. Furthermore, the results also demonstrate that the fidelity is proportional to the product of both situations above when the channel consists of the mixture basis, and its value is between of them.

文章引用:
张延亮, 康国栋, 王晓波, 周清平. 噪声环境下二比特量子态远程制备[J]. 现代物理, 2012, 2(3): 49-54. http://dx.doi.org/10.12677/MP.2012.23009

参考文献

[1] A. K. Pati. Minimum classical bit for remote preparation and meas-urement of a qubit. Physical Review A, 2000, 63(1): Article ID: 014302.
[2] H. K. Lo. Classical-communication cost in distributed quantum- information processing: A generalization of quan-tum-commu- nication complexity. Physical Review A, 2000, 62(1): Article ID: 012313.
[3] H. Y. Dai, M. Zhang and L. M. Kuang. Clas-sical communication cost and remote preparation of multi-qubit with three-party. Com- munication in Theoretical Physics, 2008, 50(1): 73-79.
[4] Z. Kurucz, P. Adam, Z. Kis, et al. Continuous variable remote state preparation. Physical Review A, 2005, 72(5): Article ID: 052315.
[5] B. A. Nguyen, J. Kim. Joint remote state preparation. Journal of Physics B: Atomic, Molecular and Optical Physics, 2008, 41(9): Article ID: 095501.
[6] 梁华秋, 刘金明. 噪声环境下基于两体纠缠态的远程态制备[J]. 物理学报, 2009, 58(6): 3692-3698.
[7] Y. Xia, J. Song and H. S. Son. Multiparty remote state prepara- tion. Journal of Physics B: Atomic, Molecular and Optical Physics, 2007, 40(19): 3719-3726.
[8] A. X. Chen, J. H. Li and L. X. Jin. Trace distance of remote state preparation through noisy channels. Communications in Theoretical Physics, 2007, 43(4): 631-636.
[9] J. Liu, S. H. Xiang, H. Q. Cui, et al. Entanglement dynamics of two qubits coupled to a noise environment. Communications in Theoretical Physics, 2009, 51(4): 637-640.
[10] M. A. Nielsen, I. L. Chuang. Quantum computation and quantum information. Cambridge: Cam-bridge University Press, 2000.
[11] 施锦, 詹佑邦. 三维两粒子赤道纠缠态的概率远程制备[J]. 量子电子学报, 2008, 3: 307-311.