| [1] | 黄炳华. 埃米特矩阵和集成网络的稳定性[J]. 固体电子学研究和进展, 1997, 17(3): 235-241. | 
                     
                                
                                    
                                        | [2] | 黄炳华. 埃米特矩阵的第二形式及其应用[J]. 通信学报, 1999, 2: 53-57. | 
                     
                                
                                    
                                        | [3] | 黄炳华. 用埃米特式计算复功率[J]. 电路与系统学报, 1999, 4(2): 45-52. | 
                     
                                
                                    
                                        | [4] | 黄炳华, 卫雅芬, 黄莹. 非线性振荡每一谐波成份的复功率守恒[A]. 第23届电路与系统学术年会论文集[C], 桂林电子科技大学, 2011. | 
                     
                                
                                    
                                        | [5] | S.-M. Yu, S.-S. Qiu and Q.-H. Lin. New results of study on generating multiple-scroll chaotic attractors. Science in China (Series F), 2003, 46(2): 104-115. | 
                     
                                
                                    
                                        | [6] | M. P. Kennedy. Chaos in the colpitts oscillator. IEEE Transactions on CAS-1, 1994, 41(11): 771-774. | 
                     
                                
                                    
                                        | [7] | G. M. Maggio, O. De Feo and M. P. Kennedy. Nonlinear analysis of the colpitts oscillator and applications to design. IEEE Transactions on CAS, 1999, 46(9): 1118-1130. | 
                     
                                
                                    
                                        | [8] | D. D. Ganji, M. Esmaeilpour and S. Soleimani. Approximate solutions to Van der Pol damped nonlinear oscillators by means of He’s energy balance method. Computer Mathematics, 2010, 87(9): 2014-2023. | 
                     
                                
                                    
                                        | [9] | Y. M. Chen, J. K. Liu. A new method based on the harmonic balance method for nonlinear oscillators. Physics Letters A, 2007, 368(5): 371-378. | 
                     
                                
                                    
                                        | [10] | 黄炳华, 黄新民, 张海明. 各类自激振荡的基波分析法[J]. 固体电子学研究和进展, 2005, 25(1): 102-107. | 
                     
                                
                                    
                                        | [11] | 黄炳华, 黄新民, 王庆华. 用基波平衡原理分析非线性电子网络的稳定性[J]. 固体电子学研究和进展, 2006, 26(1): 43- 48. | 
                     
                                
                                    
                                        | [12] | 黄炳华, 黄新民, 韦善革. 用基波平衡原理分析非线性振荡与混沌[J]. 通信学报, 2008, 29(1): 65-70. | 
                     
                                
                                    
                                        | [13] | 黄炳华, 钮利荣, 蔺兰峰. 功率平衡基础上的基波分析法[J]. 电子学报, 2007, 35(10): 1994-1998. | 
                     
                                
                                    
                                        | [14] | 黄炳华, 陈辰, 韦善革. 基波平衡原理的推广[J]. 固体电子学研究和进展, 2008, 28(1): 57-62. | 
                     
                                
                                    
                                        | [15] | 黄炳华, 黄新民, 李晖. 基于功率平衡的谐波分析法[A]. 22届电路与系统学术年会论文集[C], 上海复旦大学, 2010. | 
                     
                                
                                    
                                        | [16] | B.-H. Huang, X.-M. Huang and H. Li. Main components of harmonic solutions. International Conference on Electric Information and Control Engineering, Nanning, 15-17 April 2011: 2307-2310. | 
                     
                                
                                    
                                        | [17] | B.-H. Huang, X.-M. Huang and H. Li. Main components of harmonic solutions of nonlinear oscillations. Procedia Engineering, 2011, 16: 325-332. | 
                     
                                
                                    
                                        | [18] | S. M. Yu, W. K. S. Tang, J. Lu, et al. Generating 2n-wing attrac- tors from Lorenz-like systems. International Journal of Circuit Theory and Applications, 2010, 38(3): 243-258. | 
                     
                                
                                    
                                        | [19] | Mathematica程序(按出现先后排序):①Tab1.nb; ②Leq.nb; ③whwh.nb; ④Tab2.nb; ⑤wh35.nb; ⑥Tab3.nb; ⑦Tab4.nb. |