[1]
|
N. Cervoni, M. Szyf. Demethylase activity is directed by histone acetylation. The Journal of Biological Chemistry, 2001, 276(44): 40778-40787.
|
[2]
|
N. Detich, J. Theberge and M. Szyf. Promoter-specific activation and demethylation by MBD2/demethylase. The Journal of Bio- logical Chemistry, 2002, 277(39): 35791-35794.
|
[3]
|
D. Bruniquel, R. H. Schwartz. Selective, stable demethylation of the interleukin-2 gene enhances transcription by an active proc- ess. Nature Immunology, 2003, 4(3): 235-240.
|
[4]
|
K. Martinowich, D. Hattori, H. Wu, et al. DNA methylation- related chromatin remodeling in activity-dependent BDNF gene regulation. Science, 2003, 302(5646): 890-893.
|
[5]
|
I. C. Weaver, N. Cervoni, F. A. Champagne, et al. Epigenetic programming by maternal behavior. Nature Neuroscience, 2004, 7(8): 847-854.
|
[6]
|
M. J. Meaney, M. Szyf. Maternal care as a model for experi- ence-dependent chromatin plasticity? Trends Neuroscience, 2005, 28(9): 456-463.
|
[7]
|
N. Tsankova, W. Renthal, A. Kumar, et al. Epigenetic regulation in psychiatric disorders. Nature Reviews Neuroscience, 2007, 8(5): 355-367.
|
[8]
|
A. Razin, S. Razin. Methylated bases in mycoplasmal DNA. Nucleic Acids Research, 1980, 8(6): 1383-1390.
|
[9]
|
M. Comb, H. M. Goodman. CpG methylation inhibits proen- kephalin gene expression and binding of the transcription factor AP-2. Nucleic Acids Research, 1990, 18(13): 3975-3982.
|
[10]
|
T. Jenuwein, C. D. Allis. Translating the histone code. Science, 2001, 293(5532): 1074-1080.
|
[11]
|
M. Szyf. DNA methylation and demethylation as targets for anticancer therapy. Biochemistry (Mosc), 2005, 70(5): 533-549.
|
[12]
|
D. A. Regier, J. H. Boyd, J. D. Burke, et al. One-month preva- lence of mental disorders in the United States. Based on five Epidemiologic Catchment Area sites. Archives of General Psy- chiatry, 1988, 45(11): 977-986.
|
[13]
|
R. C. Kessler, W. T. Chiu, O. Demler, et al. Prevalence, severity, and comorbidity of 12-month DSM-IV disorders in the national comorbidity survey replication. Archives of General Psychiatry 2005, 62(6): 617-627.
|
[14]
|
A. D. Lopez, C. C. Murray. The global burden of disease, 1990-2020. Nature Medicine 1998, 4(11): 1241-1243.
|
[15]
|
S. M. Monroe, A. D. Simons and M. E. Thase. Onset of depres- sion and time to treatment entry: Roles of life stress. Journal of Consulting and Clinical Psychology, 1991, 59(4): 566-573.
|
[16]
|
K. S. Kendler, R. C. Kessler, E. E. Walters, et al. Stressful life events, genetic liability, and onset of an episode of major de- pression in women. American Journal of Psychiatry, 1995, 152(6): 833-842.
|
[17]
|
E. Castren. Neurotrophic effects of antidepressant drugs. Current Opinion in Pharmacology, 2004, 4(1): 58-64.
|
[18]
|
E. Castren, V. Voikar and T. Rantamaki. Role of neurotrophic factors in depression. Current Opinion in Pharmacology, 2007, 7(1): 18-21.
|
[19]
|
P. J. Cowen. Serotonin and depression: Pathophysiological mecha- nism or marketing myth? Trends in Pharmacological Sciences, 2008, 29(9): 433-436.
|
[20]
|
A. Caspi, K. Sugden, T. E. Moffitt, et al. Influence of life stress on depression: Moderation by a polymorphism in the 5-HTT gene. Science, 2003, 301(5631): 386-389.
|
[21]
|
P. G. Surtees, N. W. Wainwright, S. A. Willis-Owen, et al. Social adversity, the serotonin transporter (5-HTTLPR) polymorphism and major depressive disorder. Biological Psychiatry, 2006, 59(3): 224-229.
|
[22]
|
T. Canli, M. Qiu, K. Omura, et al. Neural correlates of epigene- sis. Proceedings of the National Academy of Sciences USA, 2006, 103(43): 16033-16038.
|
[23]
|
P. E. Bebbington, D. Bhugra, T. Brugha, et al. Psychosis, vic- timisation and childhood disadvantage: evidence from the sec- ond. British National Survey of Psychiatric Morbidity, 2004, 185: 220-226.
|
[24]
|
A. Kaffman, M. J. Meaney. Neurodevelopmental sequelae of postnatal maternal care in rodents: clinical and research implications of molecular insights. The Journal of Child Psychology and Psychiatry, 2007, 48(3-4): 224-244.
|
[25]
|
P. E. Mullen, J. L. Martin, J. C. Anderson, et al. The long-term impact of the physical, emotional, and sexual abuse of children: A community study. Child Abuse & Neglect, 1996, 20(1): 7-21.
|
[26]
|
D. Maestripieri. The biology of human parenting: Insights from nonhuman primates. Neuroscience & Biobehavioral Reviews, 1999, 23(3): 411-422.
|
[27]
|
D. Maestripieri. Early experience affects the intergenerational transmission of infant abuse in rhesus monkeys. Proceedings of National Academy Science USA, 2005, 102(27): 9726-9729.
|
[28]
|
M. M. Sanchez. The impact of early adverse care on HPA axis development: Nonhuman primate models. Hormones and Be- havior, 2006, 50(4): 623-631.
|
[29]
|
C. Murgatroyd, A. V. Patchev, Y. Wu, et al. Dynamic DNA me- thylation programs persistent adverse effects of early-life stress. Nature Neuroscience, 2009, 12(12): 1559-1566.
|
[30]
|
P. O. McGowan, A. Sasaki, A. C. D’Alessio, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associ- ates with childhood abuse. Nature Neuroscience, 2009, 12(3): 342- 348.
|
[31]
|
M. J. Webster, M. B. Knable, J. O’Grady, et al. Regional speci- ficity of brain glucocorticoid receptor mRNA alterations in sub- jects with schizophrenia and mood disorders. Molecular Psy- chiatry, 2002, 7(9): 985-994, 924.
|
[32]
|
J. Y. Lau, T. C. Eley. The genetics of mood disorders. Annual Reviews of Clinical Psychology, 2010, 6: 313-337.
|
[33]
|
C. Caldji, B. Tannenbaum, S Sharma, et al. Maternal care during infancy regulates the development of neural systems mediating the expression of fearfulness in the rat. Proceeding of National Academy Science USA, 1998, 95(9): 5335-5340.
|
[34]
|
D. Francis, J. Diorio, D. Liu, et al. Nongenomic transmission across generations of maternal behavior and stress responses in the rat. Science, 1999, 286(5442): 1155-1158.
|
[35]
|
J. A. McCormick, V. Lyons, M. D. Jacobson, et al. 5'-heteroge- neity of glucocorticoid receptor messenger RNA is tissue spe- cific: Differential regulation of variant transcripts by early-life events. Molecular Endocrinology, 2000, 14(4): 506-517.
|
[36]
|
W. M. Daniels, L. R. Fairbairn, G. van Tilburg, et al. Maternal separation alters nerve growth factor and corticosterone levels but not the DNA methylation status of the exon 1(7) glucocorti- coid receptor promoter region. Metabolic Brain Disease, 2009, 24(4): 615-627.
|
[37]
|
M. J. Meaney, D. H. Aitken, V. Viau, et al. Neonatal handling alters adrenocortical negative feedback sensitivity and hippo- campal type II glucocorticoid receptor binding in the rat. Neu- roendocrinology, 1989, 50(5): 597-604.
|
[38]
|
I. C. Weaver, F A. Champagne, S. E. Brown, et al. Reversal of maternal programming of stress responses in adult offspring through methyl supplementation: Altering epigenetic marking later in life. Journal of Neuroscience, 2005, 25(47): 11045-11054.
|
[39]
|
S. E. Hyman. Even chromatin gets the blues. Nature Neurosci- ence, 2006, 9(4): 465-466.
|
[40]
|
M. G. Lee, C. Wynder, D. M. Schmidt, D. G. McCafferty and R. Shiekhattar. Histone H3 lysine 4 demethylation is a target of nonselective antidepressive medications. Chemistry & Biology, 2006, 13(6): 563-567.
|
[41]
|
N. M. Tsankova, A. Kumar and E. J. Nestler. Histone modifica- tions at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. Journal of Neuroscience, 2004, 24(24): 5603-5610.
|
[42]
|
N. M. Tsankova, O. Berton, W. Renthal, et al. Sustained hippo- campal chromatin regulation in a mouse model of depression and antidepressant action. Nature Neuroscience, 2006, 9(4): 519- 525.
|