Modelica语言及PSPICE软件在微型振动发电机的仿真研究中的应用
The Application of Modelica and PSPICE Software in the Si-mulation of the Micro Seismic Power Generator
DOI: 10.12677/MOS.2012.11002, PDF, HTML, 下载: 3,287  浏览: 10,686 
作者: 张祖志*:北京市顺义区杨镇一中;龚 川*:南京师范大学物理科学与技术学院
关键词: 微型振动发电机Modelica语言PSPICE软件等效电路法Micro Seismic Power Generator; Modelica; PSPICE Software; Equivalent Circuit Method
摘要: 本文利用Modelica语言,对微型振动发电机的输出特性进行了建模和仿真研究。为验证仿真结果,基于等效电路法,在PSPICE软件中建立了微型发电机模型并进行仿真分析,最后对Modelica语言直接建模仿真的结果和等效电路法的结果进行对比和分析。仿真结果分析表明,两种方法的电压曲线的特征是一致的,幅度接近,差异主要来源于两者的仿真过程不同,Modelica语言是直接将电路方程处理为数学方程求解,而PSPICE软件是从电路状态出发进行仿真。
Abstract: This paper conducted a modeling and simulation of the output characteristics of the micro-vibration genera- tor by the Modelica language. To verify the rationality of the simulation results, the author also made a comparison with the PSPICE software based on the equivalent circuit method. The simulation results showed that the characteristic of the voltage curves from these methods is consistent and the amplitudes are similar. The differences of the amplitude mainly come from the diversity of the simulation process. The Modelica language directly transfers the circle equations into the mathematical equations to simulation while the PSPICE software carries out the simulation from the circuit state.
文章引用:张祖志, 龚川. Modelica语言及PSPICE软件在微型振动发电机的仿真研究中的应用[J]. 建模与仿真, 2012, 1(1): 8-17. http://dx.doi.org/10.12677/MOS.2012.11002

参考文献

[1] R. Guillemet, P. Basset. Design optimization of an out-of-plane gap-closing electrostatic Vibration Energy Harvester (VEH) with a limitation on the output voltage. Analog Integrated Circuits and Signal Processing, 2012, 71(1): 39-47.
[2] C. P. Le, E. Halvorsen. MEMS electrostatic energy harvesters with end-stop effects. Journal of Micromechanics and Microengineering, 2012, 22(7): Article ID: 074013.
[3] T. Sterken, G. Altena, P. Fiorini and R. Puers. Characterisation of an electrostatic vibration harvester. Dans Symposium on Design, Test, Integration and Packaging of MEMS/MOE, Stresa, 2007: 297-300.
[4] F. Cottone, H. Vocca and L. Gammaitoni. Nonlinear energy harvesting. Physical Review Letters, 2009, 102(8): Article ID: 080601.
[5] L. G. W. Tvedt, L.-C. J. Blystad and E. Halvorsen. Simulation of an electrostatic energy harvester at large amplitude narrow and wide band vibrations. Dans Symposium on Design, Test, Integration and Packaging of MEMS/MOE, Nice, 2008: in press.
[6] S. Boisseau, G. Despesse and A. Sylvestre. Optimization of an electret-based energy harvester. Smart Materials and Structures, 2010, 19(7): 1-10.
[7] 马大猷. 现代声学理论基础[M]. 北京: 科学出版社, 2004: 127-135.
[8] 郭海波. 基于Modelica语言的反作用飞轮多领域建模与仿真[J]. 系统仿真学报, 2011, 3: 598-602.
[9] H. A. C. Tilmans. Equivalent circuit representation of electromechanical transducers: I. Lumped-parameter systems. Journal of Micromechanics and Microengineering, 1996, 6(1): 157-176.
[10] 李晓雷, 俞德孚, 孙迎春. 机械振动基础[M]. 北京: 北京理工大学出版社, 1996.
[11] U. Bartsch, C. Sander, M. Blattmann, J. Gaspar and O. Paul. Influence of parasitic capacitances on the power output of electret-based energy harvesting generators. Power MEMS, 2009: 332-335.