薯类植物中的淀粉生物合成及关键酶
Starch Biosynthesis and the Key Enzymes of Root and Tuber Plants
DOI: 10.12677/BR.2013.21005, PDF, HTML, XML,  被引量 下载: 4,123  浏览: 20,053  国家科技经费支持
作者: 赵姗姗, 周文智:中国科学院上海生命科学研究院,植物生理生态研究所,植物分子遗传国家重点实验室,上海;杨 俊, 张 鹏:中国科学院上海生命科学研究院,植物生理生态研究所,植物分子遗传国家重点实验室,上海;中国科学院上海辰山植物科学研究中心,上海辰山植物园,上海
关键词: 薯类作物淀粉生物合成直链淀粉支链淀粉关键酶 Tuber and Root Crops; Starch Biosynthesis; Amylose; Amylopectin; Key Enzyme
摘要:

薯类作物富含淀粉,是我国重要的粮食和食品加工原料,也是变性淀粉和生物质能源的优势原材料。淀粉包含直链淀粉和支链淀粉两种组分,生物合成是其唯一的来源。各类作物中淀粉生物合成由多种功能保守的关键酶类相互协调、共同作用来完成。根据其功能,这些酶分为ADP葡萄糖焦磷酸化酶、淀粉合成酶、淀粉分支酶、淀粉去分支酶等。本文综述了近年来这些关键酶在生物学功能及作用机制上的新进展,分析了淀粉合成过程中可能包含的新酶种类如淀粉磷酸化酶、D-酶等的功能,并总结了这些酶类在薯类作物直链淀粉和支链淀粉合成中的功能特点。这为开展薯类作物中淀粉合成酶的鉴别和功能研究,以及建立薯类淀粉结构与性质的关联性提供了重要的参考。

Abstract: The tuber and root crops are rich in starch in their storage organs and provide important raw mate- rials not only for food and processed food, but also for modified starches and bioenergy. Starch is composed of two types of molecules, amylose and amylopectin. It can only be produced through biosynthetic pathway, a process that involves multiple enzymes of conserved functions in many crops, such as ADP-glucose phos- phorylase, starch synthases, starch branching enzymes and starch debranching enzymes. Here we review re- cent progresses in biological functions and mechanisms of these key enzymes in starch biosynthesis, include- ing new identified enzymes such as starch phosphorylase and D-enzyme. Their features in amylose and amy- lopectin biosynthesis of tuber and root crops were also explored. It not only provides important information for identification and functional analysis of key enzymes in starch biosynthesis but also bridges the gap be- tween starch structure and property of tuber and root crops.

文章引用:赵姗姗, 杨俊, 周文智, 张鹏. 薯类植物中的淀粉生物合成及关键酶[J]. 植物学研究, 2013, 2(1): 24-33. http://dx.doi.org/10.12677/BR.2013.21005

参考文献

[1] M. J. Emes, H. E. Neuhaus. Metabolism and transport in non- photosynthetic plastids. Journal of Experimental Botany, 1997, 48(12): 1995-2005.
[2] P. Geigenberger, A. Kolbe and A. Tiessen. Redox regulation of carbon storage and partitioning in response to light and sugars. Journal of Experimental Botany, 2005, 56(416): 1469-1479.
[3] A. Tiessen, J. H. M. Hendriks, M. Stitt, et al. Starch synthesis in potato tubers is regulated by post-translational redox modifi- cation of ADP-Glucose pyrophosphorylase: A novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell, 2002, 14(9): 2191-2213.
[4] A. Tiessen, K. Prescha, A. Branscheid, et al. Evidence that SNF1-related kinase and hexokinase are involved in separate sugar-signalling pathways modulating post-translational redox activation of ADP-glucose pyrophosphorylase in potato tubers. The Plant Journal, 2003, 35(4): 490-500.
[5] B. Müller-Röber, U. Sonnewald and L. Willmitzer. Inhibition of the ADP-glucose pyrophosphorylase in transgenic potatoes leads to sugar-storing tubers and influences tuber formation and ex- pression of tuber storage protein genes. EMBO Journal, 1992, 11(4): 1229-1238.
[6] J. R. Lloyd, F. Springer, A. Buléon, et al. The influence of alter- ations in ADP-glucose pyrophosphorylase activities on starch structure and composition in potato tubers. Planta, 1999, 209(2): 230-238.
[7] D. M. Stark, K. P. Timmerman, G. F. Barry, et al. Regulation of the amount of starch in plant tissues by ADP glucose pyro- phosphorylase. Science, 1992, 258(5080): 287-292.
[8] U. Ihemere, D. Arias-Garzon, S. Lawrence, et al. Genetic modi- fication of cassava for enhanced starch production. Plant Bio- technology Journal, 2006, 4(4): 453-465.
[9] T. Hamada, S. H. Kim and T. Shimada. Starch-branching enzy- me I gene (IbSBEI) from sweet potato (Ipomoea batatas); mole- cular cloning and expression analysis. Biotechnology Letters, 2006, 28(16): 1255-1261.
[10] S. H. Kim, K. Mizuno, S. Sawada, et al. Regulation of tuber formation and ADP-glucose pyrophosphorylase (AGPase) in sweet potato (Ipomoea batatas (L.) Lam.) by nitrate. Plant Growth Regulation, 2002, 37(3): 207-213.
[11] M. G. James, K. Denyer and A. M. Myers. Starch synthesis in the cereal endosperm. Current Opinion in Plant Biology, 2003, 6: 215-222.
[12] A. Tiessen, A. Nerlich, B. Faix, et al. Sub-cellular analysis of starch metabolism in developing barley seeds using a non- aqueous fractionation method. Journal of Experimental Botany, 2012, 63(5): 2071-2087.
[13] T. R. I. Munyikwa, S. Langeveld, S. N. I. M. Salehuzzaman, et al. Cassava starch biosynthesis: New avenues for modifying starch quantity and quality. Euphytica, 1997, 96(1): 65-75.
[14] T. Nakamura, P. Vrinten, K. Hayakawa, et al. Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiology, 1998, 118(2): 451-459.
[15] J. H. M. Hovenkamp-Hermelink, E. Jacobsen, A. S. Ponstein, et al. Isolation of an amylose-free starch mutant of the potato (So- lanum tuberosum L.). Theoretical and Applied Genetics, 1987, 75(1): 217-221.
[16] O. E. Nelson, H. W. Rines. The enzymatic deficiency in the waxy mutant of maize. Biochemical and Biophysical Research Communications, 1962, 9: 297-300.
[17] P. Vrinten, T. Nakamura and M. Yamamori. Molecular charac- terization of waxy mutations in wheat. Molecular and General Genetics 1999, 261(3): 463-471.
[18] H. Tatge, J. Marshall, C. Martin, et al. Evidence that amylose synthesis occurs within the matrix of the starch granule in potato tubers. Plant, Cell & Environment, 1999, 22(5): 543-550.
[19] J. P. Ral, C. Colleoni, F. Wattebled, et al. Circadian clock regula- tion of starch metabolism establishes GBSSI as a major contri- butor to amylopectin synthesis in Chlamydomonas reinhardtii. Plant Physiology, 2006, 142: 305-317.
[20] D. C. Fulton, A. Edwards, E. Pilling, et al. Role of granule- bound starch synthase in determination of amylopectin structure and starch granule morphology in potato. Journal of Biological Chemistry, 2002, 277(13): 10834-10841.
[21] I. Hanashiro, K. Itoh, Y. Kuratomi, et al. Granule-bound starch synthase I is responsible for biosynthesis of extra-long unit chains of amylopectin in rice. Plant and Cell Physiology, 2008, 49(6): 925-933.
[22] K. Denyer, B. Clarke, C. Hylton, et al. The elongation of amy- lose and amylopectin chains in isolated starch granules. The Plant Journal, 1996, 10(6): 1135-1143.
[23] S. C. Zeeman, S. M. Smith and A. M. Smith. The priming of amylose synthesis in Arabidopsis leaves. Plant Physiology, 2002, 128(3): 1069-1076.
[24] K. Denyer, D. Waite, A. Edwards, et al. Interaction with amy- lopectin influences the ability of granule-bound starch synthase I to elongate malto-oligosaccharides. Biochemical Journal, 1999, 342(3): 647-653.
[25] M. Van de Wal, C. D’Hulst, J.P. Vincken, et al. Amylose is syn- thesized in vitro by extension of and cleavage from amylopectin. Journal of Biological Chemistry, 1998, 273(35): 22232-22240.
[26] A. Kuipers, E. Jacobsen and R. Visser. Formation and deposition of amylose in the potato tuber starch granule are affected by the reduction of granule-bound starch synthase gene expression. Plant Cell, 1994, 6(1): 43-52.
[27] M. Seguchi, M. Hayashi, Y. Suzuki, et al. Role of amylose in the maintenance of the configuration of rice starch granules. Starch- Stärke, 2003, 55(11): 524-528.
[28] S. S. Zhao, D. Dufour, T. Sánchez, et al. Development of waxy cassava with different biological and physico-chemical charac- teristics of starches for industrial applications. Biotechnology and Bioengineering, 2011, 108(8): 1925-1935.
[29] S. C. Zeeman, J. Kossmann and A. M. Smith. Starch: Its meta- bolism, evolution, and biotechnological modification in plants. Annual Review of Plant Biology, 2010, 61(1): 209-234.
[30] J. Kossmann, G. J. W. Abel, F. Springer, et al. Cloning and func- tional analysis of a cDNA encoding a starch synthase from potato (Solanum tuberosum L.) that is predominantly expressed in leaf tissue. Planta, 1999, 208(4): 503-511.
[31] Y. Takahata, M. Tanaka, M. Otani, et al. Inhibition of the expres- sion of the starch synthase II gene leads to lower pasting tem- perature in sweetpotato starch. Plant Cell Reports, 2010, 29(6): 535-543.
[32] A. Edwards, D. C. Fulton, C. M. Hylton, et al. A combined re- duction in activity of starch synthases II and III of potato has novel effects on the starch of tubers. The Plant Journal, 1999, 17(3): 251-261.
[33] J. Marshall, C. Sidebottom, M. Debet, et al. Identification of the major starch synthase in the soluble fraction of potato tubers. Plant Cell, 1996, 8(7): 1121-1135.
[34] M. Gao, J. Wanat, P. S. Stinard, et al. Characterization of dull1, a maize gene coding for a novel starch synthase. Plant Cell, 1998, 10(3): 399-412.
[35] Y. J. Wang, P. White, L. Pollak, et al. Characterization of starch structures of 17 maize endosperm mutant genotypes with 0h43 inbred line background. Cereal Chemistry, 1993, 70(2): 171-179.
[36] I. Roldán, F. Wattebled, M. M. Lucas, et al. The phenotype of soluble starch synthase IV defective mutants of Arabidopsis thaliana suggests a novel function of elongation enzymes in the control of starch granule formation. The Plant Journal, 2007, 49(3): 492-504.
[37] N. Szydlowski, P. Ragel, S. Raynaud, et al. Starch granule ini- tiation in Arabidopsis requires the presence of either class IV or class III starch synthases. Plant Cell, 2009, 21(8): 2443-2457.
[38] F. Grimaud, H. Rogniaux, M. G. James, et al. Proteome and pho- sphoproteome analysis of starch granule-associated proteins from normal maize and mutants affected in starch biosynthesis. Journal of Experimental Botany, 2008, 59(12): 3395-3406.
[39] H. Cao, J. Imparl-Radosevich, H. Guan, et al. Identification of the soluble starch synthase activities of maize endosperm. Plant Physiology, 1999, 120(1): 205-216.
[40] T. H. Nielsen, L. Baunsgaard and A. Blennow. Intermediary glu- can structures formed during starch granule biosynthesis are enriched in short side chains, a dynamic pulse labeling approach. Journal of Biological Chemistry, 2002, 277(23): 20249-20255.
[41] S. A. Jobling, G. P. Schwall, R. J. Westcott, et al. A minor form of starch branching enzyme in potato (Solanum tuberosum L.) tubers has a major effect on starch structure: Cloning and char- acterisation of multiple forms of SBE A. The Plant Journal, 1999, 18(2): 163-171.
[42] T. Shimada, M. Otani, T. Hamada, et al. Increase of amylose content of sweet potato starch by RNA interference of the starch branching enzyme II gene (IbSBEII). Plant Biotechnology, 2006, 23: 85-90.
[43] R. Safford, S. A. Jobling, C. M. Sidebottom, et al. Consequences of antisense RNA inhibition of starch branching enzyme activity on properties of potato starch. Carbohydrate Polymers, 1998, 35(3-4): 155-168.
[44] G. P. Schwall, R. Safford, R. J. Westcott, et al. Production of very-high-amylose potato starch by inhibition of SBE A and B. Nature Biotechnology, 2000, 18(5): 551-554.
[45] U. Rydberg, L. Andersson, R. Andersson, et al. Comparison of starch branching enzyme I and II from potato. European Journal of Biochemistry, 2001, 268(23): 6140-6145.
[46] A. Blennow, A. M. Bay-Smidt, B. Wischmann, et al. The degree of starch phosphorylation is related to the chain length distri- bution of the neutral and the phosphorylated chains of amylo- pectin. Carbohydrate Research, 1998, 307(1-2): 45-54.
[47] M. K. Morell, A. Blennow, B. Kosar-Hashemi, et al. Differential expression and properties of starch branching enzyme isoforms in developing wheat endosperm. Plant Physiology, 1997, 113(1): 201-208.
[48] L. J. C. B. Carvalho, C. R. B. de souza, J. C. De cascardo, et al. Identification and characterization of a novel cassava (Manihot esculenta Crantz) clone with high free sugar content and novel starch. Plant Molecular Biology, 2004, 56(4): 643-659.
[49] H. Hussain, A. Mant, R. Seale, et al. Three isoforms of isoa- mylase contribute different catalytic properties for the debranch- ing of potato glucans. Plant Cell, 2003, 15(1): 133-149.
[50] Y. Utsumi, Y. Nakamura. Structural and enzymatic character- ization of the isoamylase1 homo-oligomer and the isoamylase1- isoamylase2 hetero-oligomer from rice endosperm. Planta, 2006, 225(1): 75-87.
[51] T. Delatte, M. Trevisan, M. L. Parker, et al. Arabidopsis mutants Atisa1 and Atisa2 have identical phenotypes and lack the same multimeric isoamylase, which influences the branch point distri- bution of amylopectin during starch synthesis. The Plant Journal, 2005, 41(6): 815-830.
[52] R. Bustos, B. Fahy, C. M. Hylton, et al. Starch granule initiation is controlled by a heteromultimeric isoamylase in potato tubers. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101(7): 2215-2220.
[53] R. A. Burton, H. Jenner, L. Carrangis, et al. Starch granule initi- ation and growth are altered in barley mutants that lack isoa- mylase activity. The Plant Journal, 2002, 31(1): 97-112.
[54] D. Dauvillée, C. Colleoni, G. Mouille, et al. Biochemical charac- terization of wild-type and mutant isoamylases of chlamydo- monas reinhardtii supports a function of the multimeric enzyme organization in amylopectin maturation. Plant Physiology, 2001, 125(4): 1723-1731.
[55] Y. Nakamura. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant and Cell Physiology, 2002, 43(7): 718-725.
[56] A. M. Myers, M. K. Morell, M. G. James, et al. Recent progress toward understanding biosynthesis of the amylopectin crystal. Plant Physiology, 2000, 122(4): 989-998.
[57] S. Streb, T. Delatte, M. Umhang, et al. Starch granule biosyn- thesis in arabidopsis is abolished by removal of all debranching enzymes but restored by the subsequent removal of an endoa- mylase. Plant Cell, 2008, 20(12): 3448-3466.
[58] D. Beyene, Y. Baguma, S. B. Mukasa, et al. Characterisation and role of Isoamylase1 (Meisa1) gene in cassava. African Crop Sci- ence Journal, 2010, 18: 1-8.
[59] S. H. Kim, T. Hamada, M. Otani, et al. Cloning and character- ization of sweetpotato isoamylase gene (IbIsa1) isolated from tuberous root. Breeding Science, 2005, 55(4): 453-458.
[60] U. Sonnewald, A. Basner, B. Greve, et al. A second L-type iso- zyme of potato glucan phosphorylase: Cloning, antisense inhi- bition and expression analysis. Plant Molecular Biology, 1995, 27(3): 567-576.
[61] H. Satoh, K. Shibahara, T. Tokunaga, et al. Mutation of the plastidial α-glucan phosphorylase gene in rice affects the syn- thesis and structure of starch in the endosperm. Plant Cell, 2008, 20(7): 1833-1849.
[62] I. J. Tetlow, R. Wait, Z. Lu, et al. Protein phosphorylation in amyloplasts regulates starch branching enzyme activity and protein-protein interactions. Plant Cell 2004, 16(3): 694-708.
[63] T. Albrecht, A. Koch, A. Lode, et al. Plastidic (Pho1-type) pho- sphorylase isoforms in potato (Solanum tuberosum L.) plants: Expression analysis and immunochemical characterization. Planta, 2001, 213(4): 602-613.
[64] S. G. Ball and M. K. Morell. From bacterial glycogen to starch: Understanding the biogenesis of the plant starch granule. Annual Review of Plant Biology, 2003, 54(1): 207-233.
[65] T. Takaha, J. Critchley, S. Okada, et al. Normal starch content and composition in tubers of antisense potato plants lacking D- enzyme (4-α-glucanotransferase). Planta, 1998, 205(3): 445-451.
[66] M. Steup, H. Robenek and M. Melkonian. In-vitro degradation of starch granules isolated from spinach chloroplasts. Planta, 1983, 158(5): 428-436.
[67] E. Duwenig, M. Steup, L. Willmitzer, et al. Antisense inhibition of cytosolic phosphorylase in potato plants (Solanum tuberosum L.) affects tuber sprouting and flower formation with only little impact on carbohydrate metabolism. The Plant Journal, 1997, 12(2): 323-333.
[68] J. P. Davis, N. Supatcharee, R. L. Khandelwal, et al. Synthesis of novel starches in planta: Opportunities and challenges. Starch- Stärke, 2003, 55(3-4): 107-120.
[69] A. Stensballe, S. Hald, G. Bauw, et al. The amyloplast proteome of potato tuber. FEBS Journal, 2008, 275(8): 1723-1741.
[70] I. J. Tetlow, K. G. Beisel, S. Cameron, et al. Analysis of protein complexes in wheat amyloplasts reveals functional interactions among starch biosynthetic enzymes. Plant Physiology, 2008, 146(4): 1878-1891.
[71] T. A. Hennen-Bierwagen, Q. Lin, F. Grimaud, et al. Proteins from multiple metabolic pathways associate with starch biosyn- thetic enzymes in high molecular weight complexes: A model for regulation of carbon allocation in maize amyloplasts. Plant Physiology, 2009, 149(3): 1541-1559.
[72] T. A. Hennen-Bierwagen, F. Liu, R. S. Marsh, et al. Starch bio- synthetic enzymes from developing maize endosperm associate in multisubunit complexes. Plant Physiology, 2008, 146(4): 1892-1908.
[73] F. Liu, Z. Ahmed, E. A. Lee, et al. Tetlow allelic variants of the amylose extender mutation of maize demonstrate phenotypic variation in starch structure resulting from modified protein: Protein interactions Journal of Experimental Botany, 2012, 63(3): 1167-1183.
[74] K. Raemakers, M. Schreuder, L. Suurs, et al. Improved cassava starch by antisense inhibition of granule-bound starch synthase I. Molecular Breeding, 2005, 16(2): 163-172.