MS  >> Vol. 3 No. 1 (January 2013)

    4Cr5MoSiV1钢的热变形行为及热加工图
    Hot Deformation Behavior and Hot Processing Map of 4Cr5MoSiV1 Steel

  • 全文下载: PDF(537KB) HTML    PP.1-6   DOI: 10.12677/MS.2013.31001  
  • 下载量: 3,060  浏览量: 8,910   科研立项经费支持

作者:  

康福伟,张雪敏,白 鑫,张 强,郭二军:哈尔滨理工大学材料科学与工程学院;
王焕敏:中航工业哈尔滨东安发动机(集团)有限公司

关键词:
4Cr5MoSiV1钢激活能本构方程热加工图4Cr5MoSiV1 Steel; Activation Energy; Constitutive Equation; Hot Processing Map

摘要:

利用Gleeble-1500D热模拟试验机对4Cr5MoSiV1钢在950~1100,应变速率为0.01~10.0 s−1,最大应变量为50%的条件下进行了热压缩实验。结果表明:真应变应力曲线在应变速率为10 s−1时出现波动现象;经计算得到4Cr5MoSiV1钢的激活能为416.16 kJ·mol−1,建立该合金的本构方程形式为,经验证与实验结果吻合较好;基于动态材料模型建立的热加工图可分为两个区域,在低应变速率0.01 s−10.1 s−1时为加工稳定区,且变形温度为1050时,能量耗散功率达到最大值0.3;在高应变速率1 s−110 s−1时为加工失稳区。结合变形组织的分析,合金在稳定区下具有较好的热加工性能。

The hot deformation characteristics of 4Cr5MoSiV1 steel have been investigated by hot compression tests in the temperature range of 950˚C to 1100˚C at strain rates of 0.01 s1 to 10.0 s−1 and maximum engineering strain of 50% by means of Gleeble-1500D thermal mechanical simulator. The results show that the true stress-strain curves exhibited oscillation behavior at strain rates of 10.0 s−1. The activation energy of 4Cr5MoSiV1 steel was calculated as 416.16 kJ·mol1 and the constitutive equation was developed, namely on the basis of the testing data. The constitutive equation and testing results were nearly consistent by verification. The hot processing map developed base on dynamic materials model was divided into two domains. The stability domain appeared at lower strain rates (0.01 s−1 and 0.1 s−1), and at testing temperature 1050˚C, with a peak efficiency of power dissipation of 0.3. The instability domain appeared at higher strain rates (1 s−1 and 10 s−1). The optimum hot working condition was determined in the stability domain by combining with microstructure analysis.

文章引用:
康福伟, 王焕敏, 张雪敏, 白鑫, 张强, 郭二军. 4Cr5MoSiV1钢的热变形行为及热加工图[J]. 材料科学, 2013, 3(1): 1-6. http://dx.doi.org/10.12677/MS.2013.31001

参考文献

[1] 潘健生, 胡明娟. 热处理工艺学[M]. 北京: 高等教育出版社, 2009: 247-253.
[2] 周敬恩. 模具材料选用、热处理与使用寿命[J]. 金属热处理, 1999, 5: 1-13.
[3] 干勇, 田志勇, 董瀚. 中国材料工程大典[M]. 北京: 化学工业出版社, 2005: 97-99.
[4] 刘以宽, 李润宝, 毛文华. H13钢铝合金压铸模的研制和使用[J]. 金属热处理, 1990, 35(2): 51-55.
[5] 陈杰. H13钢及其热处理[J]. 热处理技术与装备, 2008, 29(4): 44-46.
[6] 晏广华, 黄新民, 褚作朋等. 不同热处理工艺下H13钢组织性能的变化[J]. 合肥工业大学学报(自然科学版), 2011, 34(6): 834-837.
[7] C. Tekmen, M. Toparli, I. Ozdemir, et al. High temperature behaviour of H13 steel. Materials Research and Advanced Tech- niques, 2005, 96(12): 1431-1433.
[8] R. Milovic, D. Manojlovic and M. Andjelic. Hot workability of M2 type high-speed steel. Steel Research, 1992, 62: 78-84.
[9] W. Roberts. Dynamic changes that occur during hot working and their significance regarding microstructural development and hot workability. G. Krauss. Deformation, processing and structure. Metals Park: American Society for Metals, 1984: 109-184.
[10] H. J. McQueen, N. D. Ryan. Constitutive analysis in hot work- ing. Materials Science and Engineering, 2002, 322(1-2): 47.
[11] Y. Prasad, T. Seshacharyulu. Modeling of hot deformation for microstructural control. International Materials Reviews, 1998, 43(6): 243-258.
[12] Y. V. R. K. Prasad, H. L. Gegel, S. M. Doraivelu, J. C. Malas, J. T. Morgan, K. A. Lark and D. R. Barker. Modeling of dynamic material behavior in hot deformation: Forging of Ti-6242. Met- allurgical Transactions A, 1984, 15(10): 1883-1892.