理论数学  >> Vol. 3 No. 1 (January 2013)

关于G-代数的广义膨胀的几个结论
On the Generalized Inflated G-Algebras

DOI: 10.12677/PM.2013.31016, PDF, HTML, 下载: 2,542  浏览: 6,491  国家自然科学基金支持

作者: 黄文林*:中国人民大学信息学院

关键词: G-代数广义膨胀块覆盖块控制亏群G-Algebra; Generalized Inflated; Block Cover; Block Control; Defect Group

摘要: 在本文中,我们借助G-代数的()张量积定义了广义膨胀G-代数这个概念,得到了广义膨胀G-代数是局部G-代数的充要条件,推广了关于块覆盖和块控制的相应结论,我们还得到了关于广义膨胀G-代数的亏群的一个刻画。
Abstract: We defined the generalized inflated G-algebra, and obtained the necessary and sufficient condition for the local generalized inflated G-algebra. We also studied the blocks of finite groups and that of its factor groups with the inflated G-algebra, and hence promoted the results on the block cover and the block control, moreover, we characterized the defected group of the generalized inflated G-algebra.

文章引用: 黄文林. 关于G-代数的广义膨胀的几个结论[J]. 理论数学, 2013, 3(1): 101-106. http://dx.doi.org/10.12677/PM.2013.31016

参考文献

[1] B. Huppert, N. Blacburn. Finite groups II. Berlin: Springer, 1982.
[2] T. Ikeda. Some properties of interior G-algebras. Hokkaido Mathematical Journal, 1986, 15: 453-467.
[3] G. Karpilovsky. Group representations, Vol. 3, North-Holland Mathematics Studies 180. Amsterdam: Elsevier Science B.V., 1994.
[4] G. Karpilovsky. Group representations, Vol. 5, North-Holland Mathematics Studies 183. Amsterdam: Elsevier Science B.V., 1996.
[5] G. Karpilovsky. Induced modules over group algebras, North-Holland Mathematics Studies 161. Amsterdam: Elsevier Science B.V., 1990.
[6] G. Karpilovsky. Symmetric and G-algebras: With applications to group representations. Berlin: Kluwer Academic Publishers, 1990.
[7] J. Thevenaz. G-algebras and modular representation theory. Oxford: Oxford Clarendon Press, 1995.
[8] M. Collins. Blocks, normal subgroups, and Brauer’s third main theory. Journal of Algebra, 1999, 213: 69-76.
[9] B. Kulshammer. Lectures on block theory, LMSLNS 161. Cambridge: Cambridge University Press, 1991.
[10] A. M. Aglhamdi, A. A. Khammash. Defect groups of tensor modules. Journal of Pure and Applied Algebra, 2002, 167(2-3): 165-173.