APP  >> Vol. 3 No. 1 (January 2013)

    面心立方过渡金属自扩散的改进分析型嵌入原子法分析
    Analysis of Self-Diffusion of FCC Transition Metals by Modified Analytical Embedded-Atom Method

  • 全文下载: PDF(343KB) HTML    PP.1-5   DOI: 10.12677/APP.2013.31001  
  • 下载量: 2,542  浏览量: 9,510   科研立项经费支持

作者:  

陈国祥,李晓莉:西安石油大学理学院,西安

关键词:
自扩散面心立方过渡金属空位 Self-Diffusion; FCC Transition Metals; Vacancy

摘要:

采用改进分析型嵌入原子法(MAEAM)计算了面心立方过渡金属Ni、Pd、Pt、Cu、Ag、Au和Al自扩散过程中的能量。对于最近邻(NN)和次近邻(NNN)二种扩散机制,其能量曲线均为对称曲线且能量的最大值均位于各自扩散路径的中点。计算得到的单空位形成能、迁移能和自扩散激活能比用嵌入原子法(EAM)计算的结果更接近NN扩散的实验数据。计算结果表明NN扩散的激活能最低(迁移能也为最低),因此面心立方过渡金属中的最可几扩散为单空位最近邻扩散。

The energy during the process of self-diffusion in FCC transition metals Ni, Pd, Pt, Cu, Ag, Au and Al has been calculated by using modified analytic embedded-atom method (MAEAM). For each kind of two diffusion mechanisms nearest-neighbor (NN) and next-nearest-neighbor (NNN), the energy curve is symmetric and the maximum value of the energy appears at the middle point of the diffusion path. Determined mono-vacancy formation energy , migration energy and activation energy for self-diffusion agree well with available experimental data of NN diffusion and are better than those obtained by the embedded-atom method (EAM). Compared the energies corresponding to two diffusion mechanisms, the NN diffusion needs the lowest activation energy (and thus the lowest migration energy). So that, the NN mono-vacancy diffusion is favorable in FCC transition metals.

文章引用:
陈国祥, 李晓莉. 面心立方过渡金属自扩散的改进分析型嵌入原子法分析[J]. 应用物理, 2013, 3(1): 1-5. http://dx.doi.org/10.12677/APP.2013.31001

参考文献

[1] M. W. Finnis, J. E. Sinclair. A simple empirical N-body potential for transition metals. Philosophical Magazine A, 1984, 50(1): 45-55.
[2] A. M. Guellil, J. B. Adams. The application of the analytic em- bedded atom method to bcc metals and alloys. Journal of Mate- rials Research, 1992, 7(3): 639-652.
[3] B. W. Zhang, Y. F. Ouyang. Theoretical calculation of thermo- dynamic data for bcc binary alloys with the embedded-atom me- thod. Physical Review B, 1993, 48(5): 3022-3029.
[4] W. Y. Hu, B. W. Zhang, X. L. Shu and B. Y. Huang. Calculation of formation enthalpies and phase stability for Ru-Al alloys us- ing an analytic embedded atom model. Journal of Alloys and Compounds, 1999, 287(1-2): 159-162.
[5] W. Y. Hu, B. W. Zhang, B. Y. Huang, F. Gao and D. J. Bacon. Analytic modified embedded atom potentials for HCP metals. Journal of Physics: Condensed Matter, 2001, 13(6): 1193-1213.
[6] J. M. Zhang, G. X. Chen and K. W. Xu. Self-diffusion of BCC transition metals calculated with MAEAM. Physica B, 2007, 390(1-2): 320-324.
[7] M. I. Pascuet, R. C. Pasianot and A. M. Monti. Computer simu- lation of surface-point defects interaction in hcp metals. Journal of Molecular Catalysis A, 2001, 167: 165-170.
[8] W. Schüle, R. Scholz. On point defect and interactions in metals. Tokyo: University of Tokyo Press, 1982: 257.
[9] B. T. A. Mckee, W. Trifthauser and A. T. Stewart. Vacancy-for- mation energies in metals from positron annihilation. Physical Review Letters, 1972, 28: 358-360.
[10] J. B. Adams, S. M. Foiles and W. G. Wolfer. Self-diffusion and impurity diffusion of free metals using the five-frequency model and the embedded atom method. Journal of Materials Research, 1989, 4(1): 102-112.
[11] N. L. Peterson. Isotope effect in self-diffusion in palladium. Physical Review, 1964, 136: A568-A574.
[12] B. W. Zhang and W. Y. Hu, X. L. Shu. Theory of embedded atom method and its application to material science. Changsha: Hu’nan University Press, 2003: 84-85.
[13] S. N. Foiles, M. I. Baskes and M. S. Daw. Embedded-atom- method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B, 1986, 33(12): 7983-7991.