APP  >> Vol. 3 No. 1 (January 2013)

    Analysis of Self-Diffusion of FCC Transition Metals by Modified Analytical Embedded-Atom Method

  • 全文下载: PDF(343KB) HTML    PP.1-5   DOI: 10.12677/APP.2013.31001  
  • 下载量: 2,473  浏览量: 9,436   科研立项经费支持



自扩散面心立方过渡金属空位 Self-Diffusion; FCC Transition Metals; Vacancy



The energy during the process of self-diffusion in FCC transition metals Ni, Pd, Pt, Cu, Ag, Au and Al has been calculated by using modified analytic embedded-atom method (MAEAM). For each kind of two diffusion mechanisms nearest-neighbor (NN) and next-nearest-neighbor (NNN), the energy curve is symmetric and the maximum value of the energy appears at the middle point of the diffusion path. Determined mono-vacancy formation energy , migration energy and activation energy for self-diffusion agree well with available experimental data of NN diffusion and are better than those obtained by the embedded-atom method (EAM). Compared the energies corresponding to two diffusion mechanisms, the NN diffusion needs the lowest activation energy (and thus the lowest migration energy). So that, the NN mono-vacancy diffusion is favorable in FCC transition metals.

陈国祥, 李晓莉. 面心立方过渡金属自扩散的改进分析型嵌入原子法分析[J]. 应用物理, 2013, 3(1): 1-5.


[1] M. W. Finnis, J. E. Sinclair. A simple empirical N-body potential for transition metals. Philosophical Magazine A, 1984, 50(1): 45-55.
[2] A. M. Guellil, J. B. Adams. The application of the analytic em- bedded atom method to bcc metals and alloys. Journal of Mate- rials Research, 1992, 7(3): 639-652.
[3] B. W. Zhang, Y. F. Ouyang. Theoretical calculation of thermo- dynamic data for bcc binary alloys with the embedded-atom me- thod. Physical Review B, 1993, 48(5): 3022-3029.
[4] W. Y. Hu, B. W. Zhang, X. L. Shu and B. Y. Huang. Calculation of formation enthalpies and phase stability for Ru-Al alloys us- ing an analytic embedded atom model. Journal of Alloys and Compounds, 1999, 287(1-2): 159-162.
[5] W. Y. Hu, B. W. Zhang, B. Y. Huang, F. Gao and D. J. Bacon. Analytic modified embedded atom potentials for HCP metals. Journal of Physics: Condensed Matter, 2001, 13(6): 1193-1213.
[6] J. M. Zhang, G. X. Chen and K. W. Xu. Self-diffusion of BCC transition metals calculated with MAEAM. Physica B, 2007, 390(1-2): 320-324.
[7] M. I. Pascuet, R. C. Pasianot and A. M. Monti. Computer simu- lation of surface-point defects interaction in hcp metals. Journal of Molecular Catalysis A, 2001, 167: 165-170.
[8] W. Schüle, R. Scholz. On point defect and interactions in metals. Tokyo: University of Tokyo Press, 1982: 257.
[9] B. T. A. Mckee, W. Trifthauser and A. T. Stewart. Vacancy-for- mation energies in metals from positron annihilation. Physical Review Letters, 1972, 28: 358-360.
[10] J. B. Adams, S. M. Foiles and W. G. Wolfer. Self-diffusion and impurity diffusion of free metals using the five-frequency model and the embedded atom method. Journal of Materials Research, 1989, 4(1): 102-112.
[11] N. L. Peterson. Isotope effect in self-diffusion in palladium. Physical Review, 1964, 136: A568-A574.
[12] B. W. Zhang and W. Y. Hu, X. L. Shu. Theory of embedded atom method and its application to material science. Changsha: Hu’nan University Press, 2003: 84-85.
[13] S. N. Foiles, M. I. Baskes and M. S. Daw. Embedded-atom- method functions for the FCC metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Physical Review B, 1986, 33(12): 7983-7991.