图像与信号处理  >> Vol. 2 No. 1 (January 2013)

基于Zernike 矩相似度联合的图像滤波
Image Denoising by Zernike-Moment-Similarity CollaborativeFiltering

DOI: 10.12677/JISP.2013.21001, PDF, HTML, 下载: 2,871  浏览: 10,912  国家自然科学基金支持

作者: 肖秀春*:中山大学信息科学与技术学院、广东海洋大学信息学院;赖剑煌:中山大学信息科学与技术学院,广州

关键词: 图像去噪多边滤波非局域均值滤波相似性测度Zernike 矩Image Denoising; Multilateral Filtering; Non-Local Means Filtering; Similarity Measure; Zernike Moments

摘要:

非局域均值滤波(non-local means filtering, NLMF)采用图像块间灰度差测度像素间相似性,由于灰度差

Abstract: 易受噪声影响,这种相似性测度缺乏鲁棒性。图像块的Zernike 矩是块内像素灰度的统计量,且具有旋转无关特 性,能在抑制噪声的情况下较好地描述图像块特征。由图像块的各阶Zernike 矩差代替灰度差可定义Zernike 矩 相似度;联合各阶Zernike 矩相似度经加权平均可估计出所处理像素的灰度。仿真实验及分析表明文中算法相比 直接采用灰度差定义相似度的算法,能更好地去除噪声,获得更高的峰值信噪比(PSNR)。

Because similarity function defined in non-local means filter is subject to image noise, it cannot robustly represent the real similarity between pixels. Zernike moments are good statistics of the pixels in image patch, and have rotation-invariant feature, so they can be utilized to describe image feature while resistance to noise. In this paper, Zernike-moment-similarity is defined according to the difference of Zernike moments instead of pixel intensity, and then the intensity of the processed pixel is estimated by weighting the intensities of the local window according to the collaborative Zernike-moment-similarity. Simulation experiment results and analysis demonstrate that the presented algorithm can achieve better performance and higher PSNR than the current algorithms which directly adopting intensity difference as its similarity function.

 

 

文章引用: 肖秀春, 赖剑煌. 基于Zernike 矩相似度联合的图像滤波[J]. 图像与信号处理, 2013, 2(1): 1-7. http://dx.doi.org/10.12677/JISP.2013.21001

参考文献

[1] 肖秀春, 彭群生 , 卢晓敏等 . 基于次序统计量像素灰度相似度的图像双边滤波 [J].计算机辅助设计与图形学学报 , 2011, 23(7): 1232-1237.
[2] 蔡泽民 , 赖剑煌 . 一种基于超完备字典学习的图像去噪方法 [J]. 电子学报, 2009, 37(2): 347-350.
[3] V. Aurich, J. Weule. Non-linear gaussian filters performing edge preserving diffusion. Proceedings of the DAGM Symposium, London, 1995: 538-545.
[4] S. M. Smith, J. M. Brady. SUSAN—A new approach to low level image processing. International Journal of Computer Vision, 1997, 23(1): 45-78.
[5] C. Tomasi, R. Manduchi. Bilateral filtering for gray and color images. Proceedings of the 1998 IEEE International Conference on Computer Vision, Bombay, 1998: 839-846.
[6] S. Fleishman, I. Drori and D. Cohen-Or. Bilateral mesh denois-ing. ACM Transactions on Graphics, 2003, 22(3): 950-953.
[7] H. Fan, Y. Yu and Q. Peng. Robust feature-preserving mesh de- noising based on consistent subneighborhoods. IEEE Transac-tions on Visualization and Computer Graphics, 2010, 16(2): 312-324.
[8] J. J. Francis, J. G. De. The bilateral median filter. Transactions of the South Africa Institute of Electrical Engineers, 2005, 96(2): 106-111.
[9] 张鑫, 王章野 , 范涵奇等 . 保特征的三维模型的三边滤波去噪算法[J].计算机辅助设计与图形学学报 , 2009, 21(7): 936- 942.
[10] A. Buades, B. Coll and N. Morel. A review of image denoising algorithms, with a new one. Multiscale Modeling and Simula-tion, 2005, 4(2): 490-530.
[11] A. Buades, B. Coll and J. M. Morel. A non-local algorithm for image denoising. Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, Washington, 2005: 60-65.
[12] T. Tasdizen. Principal neighborhood dictionaries for non-local means image denoising. IEEE Transactions on Image Processing, 2009, 18(12): 2649-2660.
[13] J. Orchard, M. Ebrahimi and A. Wong. Efficient nonlocal-means denoising using the SVD. Proceedings of IEEE International Con-ference on Image Processing, San Diego, 2008: 1732-1735.
[14] S. Zimmer, S. Didas and J. Weickert. A rotationally invariant block matching strategy improving image denoising with non- local means. Proceedings of International Workshop on Local and Non-local Approximation in Image Processing. Lausanne, 2008: 135-142.
[15] Y. Liu, J. Wang, X. Chen, et al. A robust and fast non-local means algorithm for image denoising. Journal of Computer Science and Technology, 2008, 23(4): 270-279.
[16] Z. Ji, Q. Chen, Q. Sun, et al. A moment-based nonlocal-means algorithm for image denoising. Information Processing Letters, 2009, 109(23-24): 1248-1244.