| [1] | 黄炳华, 卫雅芬, 黄莹. 非线性振荡每一谐波成份的复功率守恒[A]. 第23届电路与系统学术年会论文集[C]. 桂林: 桂林电子科技大学, 2011. | 
                     
                                
                                    
                                        | [2] | D. D. Ganji, M. Esmaeilpour and S. Soleimani. Approxi-mate solutions to van der pol damped nonlinear oscillators by means of he’s energy balance method. Computer Mathematics, 2010, 87(9): 2014-2023 | 
                     
                                
                                    
                                        | [3] | Y. M. Chen, J. K. Liu. A new method based on the harmonic balance method for nonlinear oscillators. Physics Letters A, 2007, 368(5): 371-378 | 
                     
                                
                                    
                                        | [4] | 黄炳华, 黄新民, 张海明. 各类自激振荡的基波分析法[J]. 固体电子学研究和进展, 2005, 25(1): 102-107. | 
                     
                                
                                    
                                        | [5] | 黄炳华, 黄新民, 王庆华. 用基波平衡原理分析非线性电子网络的稳定性[J]. 固体电子学研究和进展, 2006, 26(1): 43- 48. | 
                     
                                
                                    
                                        | [6] | 黄炳华, 黄新民, 韦善革. 用基波平衡原理分析非线性振荡与混沌[J]. 通信学报, 2008, 29(1): 65-70. | 
                     
                                
                                    
                                        | [7] | 黄炳华, 钮利荣, 蔺兰峰. 功率平衡基础上的基波分析法[J].电子学报, 2007, 35(10): 1994-1998. | 
                     
                                
                                    
                                        | [8] | 黄炳华, 黄新民, 李晖. 基于功率平衡的谐波分析法[A]. 第22届电路与系统学术年会论文集[C]. 上海: 复旦大学, 2010. | 
                     
                                
                                    
                                        | [9] | B.-H. Huang, X.-M. Huang and H. Li. Main components of harmonic solutions. In: International Conference on Electric Informa-tion and Control Engineering. New York: IEEE Inc., 15-17 April 2011: 2307-2310. | 
                     
                                
                                    
                                        | [10] | B.-H. Huang, X.-M. Huang and H. Li. Main compo-nents of harmonic solutions of nonlinear oscillations. Procedia Engi-neering, 2011, 16: 325-332. | 
                     
                                
                                    
                                        | [11] | 黄炳华, 李广明, 卫雅芬. 用虚功平衡原理求解无损耗系统的主谐波[J]. 现代物理, 2012, 2(3): 60-69. | 
                     
                                
                                    
                                        | [12] | S. M. Yu, W. K. S. Tang, J. Lu, et al. Generating 2n-wing attrac- tors from Lorenz-like systems. International Journal of Circuit heolications, 2010, 38(3): 243-258. | 
                     
                                
                                    
                                        | [13] | S.-M. Yu, S.-S. Qiu and Q.-H. Lin. New results of study on generating multiple-scroll chaotic attrac-tors. Science in China (Series F), 2003, 46(2): 104-115. | 
                     
                                
                                    
                                        | [14] | Mathe-matica程序(按出现先后排序): ①first.nb; ②Tab1.nb; ③Tab2.nb; ④Tab3.nb. |