电磁感应透明探针光与控制光量子相干光学特性分析
Quantum Coherent Optical Properties of Probe and Control Fields in Electromagnetically Induced Transparency
DOI: 10.12677/MP.2013.31008, PDF, HTML, 下载: 3,901  浏览: 14,138  国家自然科学基金支持
作者: 姜新韵, 徐子涵:浙江大学,玉泉校区,光电信息工程学系,现代光学仪器国家重点实验室,杭州;沈建其*:jqshen@zju.edu.cn
关键词: 电磁感应透明密度矩阵量子相干特性可调色散行为Electromagnetically Induced Transparency; Density Matrix; Quantum Coherent Properties; Tunable Dispersion Characteristics
摘要: 对三能级电磁感应透明原子系统的密度矩阵方程进行解算,获得该系统九个密度矩阵元的色散行为,同时研究探针光与控制光所对应的原子气体介电系数的色散曲线和一般相干操控特性。本文将控制光与探针光同等看待,即不同于以往着重于探针光特性、将控制光仅当作调控电磁感应透明介质光学特性的外部条件看待、从而没有研究控制光本身如何受探针光的影响。本文研究探针光与控制光之间的彼此影响(即彼此受对方操控的行为)。电磁感应透明介质内由光来控制光的量子相干行为可以作为新型光子学器件设计的基本原理。
Abstract: The equation of motion of the density matrix of a three-level EIT (electromagnetically induced transparency) atomic system is solved and the behavior of dispersion of the nine density matrix elements is presented. The general optical response of the electric permittivity corresponding to both the probe and the control fields is addressed based on the numerical results of the equation of motion of the density matrix. The probe and the control fields are treated in the same way, in which the influence of the probe field on the control field (and vice versa) is considered. The optical be- havior of controlling light with light can be a fundamental mechanism for new photonic and quantum optical device design.
文章引用:姜新韵, 徐子涵, 沈建其. 电磁感应透明探针光与控制光量子相干光学特性分析[J]. 现代物理, 2013, 3(1): 43-48. http://dx.doi.org/10.12677/MP.2013.31008

参考文献

[1] J. Q. Shen. Classical & quantum optical properties of artificial elec-tromagnetic media. Kerala: Transworld Research Network, 2008.
[2] S. E. Harris. Electromagnetically induced transparency. Physics Today, 1997, 50(7): 36-42.
[3] J. Q. Shen. Transient evolu-tional behaviors of double-control electromagnetically induced trans-parency. New Journal of Phy- sics, 2007, 15: 374-378.
[4] C. F. Roos, et al. Experimental demonstration of ground state laser cooling with electromagnetically induced transparency. Physical Review Let-ters, 2000, 85: 5547-5550.
[5] C. Champenois, G. Morigi and J. Eschner. Quantum coherence and population trapping in three-photon processes. Physical Review A, 2006, 74(5): 053404 (10 pages).
[6] J. Cheng, S. Han. Electromagnetically induced self-imaging. Optics Letters, 2007, 32(9): 1162-1164.
[7] A. M. Zheltikov. Phase coher-ence control and subcycle transient detection in nonlinear Raman scat-tering with ultrashort laser pulses. Physical Review A, 2007, 74(5), 053403 (7 pages).
[8] A. Gandman, L. Chuntonov, L. Rybak and Z. Amitay. Coherent phase control of resonance-mediated (2 + 1) three-photon absorption. Physical Review A, 2007, 75(3): 031401 (4 pages).
[9] H. Pettersson, L. Landin, M. Kleverman, W. Seifert, L. Samuelson, Y. Fu and M. Willander. Intersubband photoconductivity of self-assembled InAs quantum dots embedded in InP. Journal of Ap-plied Physics, 2004, 95(4): 1829-1831.
[10] Y. Fu, O. Engström and Y. Luo. Emission rates for electron tunneling from InAs quantum dots to GaAs substrate. Journal of Applied Physics, 2004, 96(11): 6477-6481.
[11] J. Siegert, S. Marcinkevivius and Q. X. Zhao. Carrier dynamics in modulation-doped InAs/GaAs quantum dots. Physical Review B, 2005, 72(8): 085316 (7 pages).
[12] M. O. Scully, M. S. Zubairy. Quantum Optics. Chapter 5. Cambridge: Cambridge Univer-sity Press, 1997.
[13] L. V. Hau, S. E. Harris, Z. Dutton and C. H. Behroozi. Light speed reduction to 17 metres per second in an ultra-cold atomic gas. Nature, 1999, 397(6720): 594-598.
[14] D. F. Phillips, M. Fleischhauer, A. Mair, R. L. Walsworth and M. D. Lukin. Storage of light in atomic vapor. Physical Review Letters, 2001, 86: 783-786.
[15] M. D. Lukin, S. F. Yelin and M. Fleischhauer. Entanglement of atomic ensembles by trapping correlated photon states. Physical Re-view Letters, 2000, 84: 4232-4235.
[16] J. Q. Shen, P. Zhang. Dou-ble-control quantum interferences in a four-level atomic system. Optics Express, 2007, 15(10): 6484-6493.
[17] E. Arimondo. Coherent popu-lation trapping in laser spectroscopy. Progress in Optics, 1996, 35: 257-354..