从电解水技术发展探讨污水电解制氢同时去除污染的前景
Advance of Wastewater Electrohydrolysis for Simultaneous Hydrogen Production and Pollution Removal Based on Water Electrolysis Development
DOI: 10.12677/JAPC.2013.21001, PDF, HTML, XML,  被引量 下载: 3,981  浏览: 14,264  国家科技经费支持
作者: 马伟*, 程子洪, 吕腾飞, 宋小燕, 李欣欣, 刘友海:大连理工大学化工学部,大连
关键词: 污水电解氢气能耗电极材料电解槽Wastewater; Electrohydrolysis; Hydrogen; Energy Consumption; Electrode Material; Electrolyzer
摘要: 结合电解水制氢的技术研究现状和发展,针对能耗的结构构成分析,讨论了电解水制氢技术在污水电解方面的发展,主要针对电极形式、污水类型进行了综述和总结;对根据污水的类型进行针对性的电极材料和电解槽的设计和完善进行了展望。 Simultaneous hydrogen production and pollution abatement from wastewater by electrohydrolysis technol-ogy was discussed combining with the current research development of the water electrolysis for hydrogen formation, aimed at analyzing the energy consumption structure. The influences of the electrode form, wastewater types on hydro-gen formation and energy efficiency were reviewed in this study. Moreover, the design and improvement of electrode materials and electrolyzers based on different wastewater types are prospected in this paper.
文章引用:马伟, 程子洪, 吕腾飞, 宋小燕, 李欣欣, 刘友海. 从电解水技术发展探讨污水电解制氢同时去除污染的前景[J]. 物理化学进展, 2013, 2(1): 1-6. http://dx.doi.org/10.12677/JAPC.2013.21001

参考文献

[1] C. C. Vǎduva, N. Vaszilcsin, A. Kellenberger, et al. Catalytic en-hancement of hydrogen evolution reaction on copper in the presence of benzylamine. International Journal of Hydrogen Energy, 2011, 36: 6994-7001.
[2] 倪萌, M. K. H. Leung and K. Sumathy. 电解水制氢技术进展[J]. 能源环境保护, 2004, 18(5): 5-10.
[3] G. S. Tasic, S. P. Maslovara, D. L. Zugic, et al. Characterization of the Ni-Mo catalyst formed in situ during hydrogen generation from alkaline water electrolysis. International Journal of Hydrogen Energy, 2011, 36: 11588-11595.
[4] I. Herraiz-Cardona, E. Ortega, L. Vázquez-Gómez, et al. Electrochemical characterization of a NiCo/Zn cathode for hy-drogen generation. International Journal of Hydrogen Energy, 2011, 36: 11578-11587.
[5] H. Ito, T. Maeda, A. Nakano, et al. Properties of Nafion membranes under PEM water, electrolysis conditions. International Journal of Hydrogen Energy, 2011, 36: 10527-10540.
[6] S. Sawada, T. Yamaki, T. Maeno, et al. Solid polymer electrolyte water electrolysis systems for hydrogen production based on our newly developed membranes, Part I: Analysis of voltage-current characteristics. Progress in Nuclear Energy, 2008, 50: 443-448.
[7] J. Udagawa, P. Aguiar and N. P. Brandon. Hydrogen production through steam electrolysis: Control strategies for a athode-sup- ported intermediate temperature solid oxide electrolysis cell. Journal of Power Sources, 2008, 180: 354-364.
[8] B. Yu, W. Q. Zhang, J. M. Xu, et al. Status and research of high- ly efficient hydrogen production through high temperature steam electrolysis at INET. International Journal of Hydrogen Energy, 2010, 35(7): 2829-2835.
[9] 李琼玖, 王建华, 李德宽等. 水电解制氢技术的进展及其在煤制甲醇中的应用[J]. 中外能源, 2008, 13: 35-43.
[10] F. Kargi. Comparison of different electrodes in hydrogen gas production from electrohydrolysis of wastewater organics using photovoltaic cells (PVC). International Journal of Hydrogen Energy, 2011, 36: 3450-3456.
[11] F. Kargi, E. C. Catalkaya. Electrohydrolysis of landfill leachate organics for hydrogen gas production and COD removal. International Journal of Hydrogen Energy, 2011, 36: 8252-8260.
[12] F. Kargi, E. C. Catalkaya. Hydrogen gas production from olive mill wastewater by electrohydrolysis with simultaneous COD removal. International Journal of Hydrogen Energy, 2011, 36: 3457-3464.
[13] F. Kargi, E. C. Catalkaya and S. Uzuncar. Hydrogen gas production from waste anaerobic sludge by electrohydrolysis: Effects of applied DC voltage. International Journal of Hydrogen Energy, 2011, 36: 2049-2056.
[14] F. Kargi, S. Uzuncar. Simultaneous hydrogen gas formation and COD removal from cheese whey wastewater by electrohydroly- sis. International Journal of Hydrogen Energy, 2012, 37: 11656- 11665.
[15] H. Park , K.-H. Choo, H.-S. Park, et al. Electrochemical oxidation and microfiltration of municipal wastewater with simultaneous hydrogen production: Influence of organic and particulate matter. Chemical Engineering Journal, 2013, 215-216: 802-810.
[16] J. Y. Jiang, J. L. Hu, M. X. Cui, et al. Integration of hydrogen production and waste heat recovery in electrochemical wastewater treatment. Renewable Energy, 2012, 43: 179-182.
[17] 马伟, 程子洪, 张星等. 一种废水处理同时制氢的装置和方法[P]. 中国专利: 201110331982.9, 2012-11-7.
[18] W. L. Guo, L. Li, L. L. Li, et al. Hydrogen production via electrolysis of aqueous formic acid solutions. International Journal of Hydrogen Energy, 2011, 36: 9415-9419.
[19] J. R. Ambler, B. E. Logan. Evaluation of stainless steel cathodes and a bicarbonate buffer for hydrogen production in microbial electrolysis cells using a new method for measuring gas production. International Journal of Hydrogen Energy, 2011, 36: 160- 166.
[20] A. W. Jeremiasse, J. Bergsma, J. M. Kleijn, et al. Performance of metal alloys as hydrogen evolution reaction catalysts in a microbial electrolysis cell. International Journal of Hydrogen Energy, 2011, 36: 10482-10489.