水资源研究  >> Vol. 2 No. 1 (February 2013)

长江上游梯级水库联合发电调度研究
Joint Operation of Cascade Reservoirs’ Hydropower Generation in the Upper Yantze River Reach

DOI: 10.12677/JWRR.2013.21001, PDF,  被引量 下载: 2,706  浏览: 10,209  国家自然科学基金支持

作者: 周建中*, 穆青青, 冯 宇, 张勇传:华中科技大学水电与数字化工程学院

关键词: 金沙江下游梯级三峡梯级粒子群算法优化运行效益分析Jinsha River Downstream Cascade; Three Gorges Cascade; Particle Swarm Optimization; Optimal Dispatching; Benefit Analysis

摘要: 随着金沙江下游梯级水库的相继建成和投运,将逐渐改变长江流域梯级水库综合调度格局,原有的单个电站常规发电调度方案已难以达到全局最优。由此,针对长江上游水库群联合发电调度问题,提出以发电量最大为目标且兼顾保证出力要求的长江上游六库联合发电优化调度模型,并采用改进粒子群优化算法进行求解。结果表明:在均满足保证出力的情况下,六库联合优化调度方案比常规调度方案发电量大,不仅能够获得较好的发电效益,有效提高水能资源利用率,而且联合调度后,已投入生产的三峡梯级可增发电量25.41亿千瓦时,新增效益3.05%,由此可见,六库电站联合运行对三峡梯级的电量补偿效益巨大。
Abstract: Along with the JinshaRiverdownstream cascade built and put into operation, the comprehensive control pattern of the Yangtze River valley cascade reservoirs will be changed, and the original single power station has been difficult to conventional power generation scheduling scheme optimum. So Joint Operation of Hydropower Generation for multi-reservoir of Upper Yangtze River inChinawas studied in this paper. Choosing maximum hydropower generation as objective function under the considering firm power, a optimal model were established for joint operation of Upper Yangtze River, the model was solved by improved particle swarm optimization. The result shows that compared with the conventional dispatching the joint optimal dispatching of six reservoirs could Sends more electricity, creating better economic benefits, satisfying the demand of power system load better, and improving Water resources utilization effectively; and compared with the individual operation of three Gorges cascade, the power generation of three Gorges cascade increases 25.41 kWh, growing rate run at 3.05%. The compensation benefit of the Three Gorges cascade is significant.

文章引用: 周建中, 穆青青, 冯宇, 张勇传. 长江上游梯级水库联合发电调度研究[J]. 水资源研究, 2013, 2(1): 1-6. http://dx.doi.org/10.12677/JWRR.2013.21001

参考文献

[1] 张俊, 程春田, 廖胜利, 等. 改进粒子群优化算法在水电站群优化调度中的应用研究[J]. 水利学报, 2009, 40(4): 435-441. ZHANG Jun, CHENG Chuntian, LIAO Shengli, et al. Applica- tion of improved particle swarm optimization algorithm to oper- ation of hydropower station group. Journal of Hydraulic Engi- neering, 2009, 40(4): 435-441. (in Chinese)
[2] 覃晖, 周建中, 李英海, 等. 基于文化克隆选择算法的梯级水电站联合优化调度[J]. 系统仿真学报, 2010, 10: 2342-2346, 2362. QIN Hui, ZHOU Jianzhong, LI Yinghai, et al. Optimal dispatch of cascade hydroelectric stations based on cultured clone select algorithm. Journal of System Simulation, 2010, 10: 2342-2346, 2362. (in Chinese)
[3] 宗航, 周建中, 张勇传, 等. POA改进算法在梯级电站优化调度中的研究和应用[J]. 计算机工程, 2003, 29(17): 105-106, 109. ZONG Hang, ZHOU Jianzhong, ZHANG Yongchuan, et al. Re- search and application for cascaded hydroelectric optimized scheduling based on modified adaptive POA. Computer Engi- neering, 2003, 29(17): 105-106, 109. (in Chinese)
[4] 邹进, 张勇传. 三峡梯级电站短期优化调度的模糊多目标动态规划[J]. 水利学报, 2005, 36(8): 925-931. ZOU Jin, ZHANG Yongchuan. Short-term optimal scheduling of cascade hydropower stations using fuzzy multi-objective dyna- mic programming. Journal of Hydraulic Engineering, 2005, 36 (8): 925-931. (in Chinese)
[5] 杨俊杰, 周建中, 方仍存, 等. MOPSO算法及其在水库优化调度中的应用[J]. 计算机工程, 2007, 33(18): 249-250, 264. YANG Junjie, ZHOU Jianzhong, FANG Naicun, et al. Multi- objective particle swarm optimization and its application in op- timal regulation of reservoir. Computer Engineering, 2007, 33 (18): 249-250, 264. (in Chinese)
[6] 陈立华, 梅亚东, 董雅洁, 等. 改进遗传算法及其在水库群优化调度中的应用[J]. 水利学报, 2008, 39(5): 550-556. CHEN Lihua, ME Yadong, DONG Yajie, et al. Improved genetic algorithm and its application in optimal dispatch of cascade res- ervoirs. Journal of Hydraulic Engineering, 2008, 39(5): 550-556. (in Chinese)
[7] 周建中, 李英海, 肖舸, 等. 基于混合粒子群算法的梯级水电站多目标优化调度[J]. 水利学报, 2010, 41(10): 1212-1219. ZHOU Jianzhong, LI Yinghai, XIAO Ge, et al. Multi-objective optimal dispatch of cascade hydropower stations based on shuf- fled particle swarm operation algorithm. Journal of Hydraulic Engineering, 2010, 41(10): 1212-1219. (in Chinese)
[8] 黎育红, 程心环, 周建中, 等. 混沌粒子群微分进化算法及其在水库发电优化调度中的应用[J]. 中国农村水利水电, 2011, 12: 167-171. LI Yuhong, CHENG Xinhuan, ZHOU Jianzhong, et al. Chaotic particle swarm optimization and differential evolution algorithm and its application to reservoir optimal scheduling of generation in hydropower systems. China Rural Water and Hydropower, 2011, 12: 167-171. (in Chinese)
[9] 樊启祥. 金沙江下游水电开发环保管理与实践[J]. 环境保护, 2010, 6: 40-42. FAN Qixiang. Jinsha River downstream hydropower develop- ment environmental protection management and practice. Envi- ronmental Protection, 2010, 6: 40-42. (in Chinese)
[10] 水利部长江水利委员会. 金沙江干流综合规划报告[R]. 武汉: 长江水利委员会, 2006. The Ministry of Water Resources of the Yangtze River Water Resources Commission. The Jinsha River comprehensive plan- ning report. Wuhan: Changjiang Water Resources Commission, 2006. (in Chinese)
[11] KENNEDY, J., EBERHART, R. C. Particle swarm optimization. IEEE International Conference on Neural Network, Perth, 1995: 1942-1948.
[12] SHI, Y., EBERHART, R. A modified particle swarm optimizer. IEEE International Conference on Evolutionary Computation, 1998: 69-73.
[13] KENNEDY, J., EBERHART, R. C. A new optimizer using parti- cle swarm. Proceeding of the 6th International Symposium on Micro Machine and Human Science, Nagoya, 1995: 39-43.