HJCET  >> Vol. 3 No. 2 (March 2013)

    气体–原油分子扩散系数实验研究进展
    Experimental Study of Molecule Diffusion Coefficient for Gas-Oil System

  • 全文下载: PDF(439KB) HTML    PP.49-56   DOI: 10.12677/HJCET.2013.32009  
  • 下载量: 2,466  浏览量: 10,829   国家自然科学基金支持

作者:  

叶安平,郭平:西南石油大学国家重点实验室油气藏地质及开发工程,成都;
沈晓英:国家知识产权局,北京;
王绍平:中国石油长庆油田分公司第二采油厂,庆阳;
程忠钊:西安长庆科技工程有限责任公司,西安

关键词:
原油传质分子扩散系数Oil; Mass Transfer; Molecule Diffusion Coefficient

摘要:

在注气驱油的过程中,当气体与原油接触时,气体与原油间就会发生传质现象,改变原油流体性质,改善原油流动能力,从而提高采收率。分子扩散系数是一个描述气–油体系传质率的重要参数,目前多以间接方法来测试分子扩散系数。确定扩散系数两个关键问题是:1) 确定合理的实验方法;2) 选择准确的模型来解释实验数据。本文综述了气–油分子扩散系数的实验及模型研究进展,包括确定分子扩散系数的实验方法和分子扩散系数的影响因素。

During the process of gas flooding, when the gas comes in contact with oil, the mass transfer phenomenon occurs. It change properties and improve flow ability of oil fluid to enhance oil recovery. Diffusion coefficient of gas-oil systems is the most important factor to determine the transfer rate of species from one phase to another. The conven-tional experimental methods used in diffusion coefficient determination are classified into direct and indirect, and the later is used greatly. However, the determination of diffision coefficient requires two important decisions: 1) to define a reliable experimental method; and 2) to choose accurate models for data interpretation. The present paper is aimed at reviewing experimental and modeling studies on diffusion coefficient for gas-oil system, to provide some reference for the future research. The focus of the analysis is three aspects. First, we review the experimental methods of determining diffusion coefficient for gas-oil system. Second, the pressure decay method and models are presented. Finally, we re-view the influencing factors of determining diffusion coefficient.

文章引用:
叶安平, 沈晓英, 郭平, 王绍平, 程忠钊. 气体–原油分子扩散系数实验研究进展[J]. 化学工程与技术, 2013, 3(2): 49-56. http://dx.doi.org/10.12677/HJCET.2013.32009

参考文献

[1] 李士伦, 郭平, 戴磊, 孙雷. 发展注气提高采收率技术[J]. 西南石油学院学报, 2000, 22(3): 41-46.
[2] 马涛, 汤达祯, 蒋平, 齐宁. 注CO2提高采收率技术现状[J]. 油田化学, 2007, 24(4): 379-383.
[3] 常志强, 孙雷. 富含气态凝析水的凝析油气体系相态研究[J]. 天然气地球科学, 2006, 17(2): 206-209.
[4] Y. P. Zhang, C. L. Hyndman and B. B. Maini. Measurement of gas diffusivity in heavy oils. Annual Technical Meeting, 2000, 25: 37-47.
[5] H. Hoteit, A. Firoozabadi. Numerical modeling of diffusion in fractured media for gas-injection and -recycling schemes. SPE Annual Technical Confer-ence and Exhibition. San Antonio: Society of Petroleum Engineers (SPE), 2009.
[6] P. M. Sigmund. Prediction of molecular diffusion at reservoir condition. Part 1—Measurement and prediction of binary dense gas diffusion coefficient. Journal of Canadian Petroleum Tech-nology, 1976, 15(2).
[7] J. E. Hanaaen, D. Stenberg. Experimental diffusion coefficients for nitrogen at reservoir conditions. Stavanger: Petroleum Research Centre, Rogaland Research Institute, 1987.
[8] M. R. Riazi, C. H. Whitson. Estimation of diffusion coeffi-cients of nitrogen. Methane and ethane in reservoir fluid from experi-mental measurements. Brussels: Petrofina, S.A., 1988.
[9] K. B. Dickson, J. P. Johnson. Measurement of nitrogen diffusion into Ekofisk chalk. Bartlesville: Phillips Petroleum Company, Drilling and Produc-tion Division, 1988.
[10] S. R. Upreti. Experimental measurement of gas diffusivity in bitumen: results for CO2, CH4, C2H6, and N2. The University of Calgary, 2002: 50-80.
[11] M. R. Riazi. A new method for experimental measurement of diffusion coefficients in reservoir fluids. Journal of Petroleum Science and Engineering, 1996, 14(5): 235-250.
[12] H. Sheikha, M. Pooladi-Darvish and A. K. Mehrotra. Development of graphical methods for estimating the diffusivity coef-ficient of gases in bitumen from pressure-decay data. Energy & Fuels, 2005, 19(5): 2041-2049.
[13] T. A. Renner. Measurement and correla-tion of diffusion coefficients for oil and rich gas applications. SPE Reservoir Engineering, 1988, 3(2): 517-523.
[14] M. Jamialahmadi, M. Emadi and H. Müller Steinhagen. Diffusion coefficients of methane in liquid hydrocarbons at high pressure and temperature. Journal of Petroleum Science and Engineering, 2006, 53(1-2): 47-60.
[15] Wen and Kantzas. Estimation of diffusion coefficients in bitumen solvent mixtures as derived from low field NMR spectra. Journal of Canadian Petroleum Technology, 2005, 44(4): 28-35.
[16] D. Salama, A. Kant-zas. Monitoring of diffusion of heavy oils with hydrocarbon solvents in the presence of sand. SPE/PS- CIM/CHOA International Thermal Operations and Heavy Oil Symposium. Calgary: Society of Petroleum Engineers, 2005.
[17] U. Guerrero-Aconcha, A. Kantzas. Diffusion of hydrocarbon gases in heavy oil and bitumen. Latin American and Car-ibbean Petroleum Engineering Conference. Cartagena de Indias: Soci-ety of Petroleum Engineers, 2009.
[18] L. Song, A. Kantzas and J. Bryan. Experimental measurement of diffusion coefficient of CO2 in heavy oil using X-ray computer-assisted tomography under reservoir conditions. Canadian Unconventional Resources and International Petroleum Conference. Calgary: Society of Petroleum Engineers, 2010.
[19] L. Song, A. Kantzas and J. Bryan. Investigation of CO2 diffusivity in heavy oil using X-ray computer-assisted tomography under reservoir conditions. SPE International Conference on CO2 Capture, Storage, and Utilization. New Orleans: Society of Petroleum Engineers, 2010.
[20] C. D. Yang and Y. A. Gu. A new method for measuring solvent diffusivity in heavy oil by dynamic pendant drop shape analysis. SPE Annual Technical Conference and Exhibition. Denver: Society of Petroleum Engineers, 2003.
[21] R. Islas-Juarez, V. Samanego, C. Perez-Rosales, et al. Experimental study of effective diffusion in porous media. SPE International Petroleum Conference in Mexico. Puebla Pue: Society of Petroleum Engineers, 2004.
[22] 李东东, 侯吉瑞, 赵凤兰, 王少朋, 岳湘安. 二氧化碳在原油中的分子扩散系数和溶解度研究[J]. 油田化学, 2009, 26(4): 405-408.
[23] F. Civan, M. L. Rasmussen. Accurate measurement of gas diffusivity in oil and brine under reservoir conditions. SPE Production and Opera-tions Symposium. Oklahoma City: Society of Petroleum Engineers, 2001.
[24] F. Civan, M. L. Rasmussen. Improved measurement of gas diffusivity for miscible gas flooding under nonequilibrium vs. equilib-rium conditions. SPE/DOE Improved Oil Recovery Sym- posium. Tulsa: Society of Petroleum Engineers, 2002.
[25] F. Civan, M. L. Rasmussen. Analysis and interpretation of gas diffusion in quiescent reservoir, drilling, and completion fluids: equilibrium vs. non-equilibrium models. SPE Annual Technical Conference and Exhi-bition. Denver: Society of Petroleum Engineers, 2003.
[26] F. Civan, M. L. Rasmussen. Determination of gas-diffusion and inter-face-mass-transfer coefficients for quiescent reservoir liquids. SPE Journal, 2006, 11(1): 71-79.
[27] W. Sachs. The diffusional transport methane in liquid water: Method and result of experimental investiga-tion at elevated pressure. Journal of Petroleum Science and Engineer-ing, 1998, 21(3): 153-164.
[28] I. I. Abarzhi. Wave mechanism of mass transfer for kinetics of adsorption in biporous media. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 164(2): 105-113.
[29] M. L. Rasmussen, F. Civan. Parameters of gas dissolution in liquids obtained by isothermal pressure decay. Fluid Mechanics and Transport Phenomena, 2009, 55(1): 9-23.
[30] F. L. Zhao, S. J. Huang and J. R. Hou. Determination of diffusion coefficient and percolation model during CO2 flooding. 2010 International Sym-posium on Multi-field Coupling Theory of Rock and Soil Media and Its Applications, 2010: 106-112.
[31] D. Unatrakarn, K. Asghari and J. Condor. Experimental studies of CO2 and CH4 diffusion coefficient in bulk oil and porous media. Energy Procedia, 2011, 4: 2170-2177.
[32] V. Oballa, R. M. Butler. An experimental study of diffusion in the bitumen-toluene system. Journal of Canadian Petro-leum Technology, 1989, 28(2): 63.
[33] D. Salama, A. Kantzas. Monitoring of diffusion of heavy oils with hydrocarbon solvents in the presence of sand. SPE/PS- CIM/CHOA International Thermal Opera-tions and Heavy Oil Symposium. Calgary: Society of Petroleum Engi-neers, 2005.
[34] H. Luo, H. Kryuchkov and A. Kantzas. The effect of volume changes due to mixing on diffusion coefficient determination in heavy oil and hydrocarbon solvent system. SPE Annual Technical Conference and Exhibition. Anaheim: Society of Petroleum Engineers, 2007.
[35] H. Luo, A. Kantzas. Investigation if diffusion coefficients of heavy oil and hydrocarbon solvent systems in porous media. SPE/DOE Symposium on Improved Oil Recovery. Tulsa: Society of Petroleum Engineers, 2008.
[36] T. A. Nguyen, S. M. Faroup-Ali. Role of diffusion and gravity segregation in oil recovery by immiscible carbon dioxide wag progress. UNITER International Conference on Heavy Crude and Tar Sand, 1995, 12: 393-403.
[37] L. S. Wang, Z. X. Lang and T. M. Guo. Measurements and correlation of the diffusion coefficients of carbon dioxide in liquid hydrocarbons under Elevated pressure. Fluid Phase Equilibrium, 1996, 117(2): 364-372.
[38] P. Guo, Z. H. Wang, P. P. Shen and J. F. Du. Molecular diffusion coefficients of the multicomponent gas-crude oil systems under high temperature and pressure. Industrial & Engineering Chemistry Research, 2009, 48(19): 9023-9027.
[39] S. R. Upreti, A. K. Mehrotra. Experimental meas-urement of gas diffusivity in bitumen: Results for carbon dioxide. Industrial & Engineering Chemistry Research, 2000, 39(4): 1080-1087.
[40] A. K. Tharanivasan, C. D. Yang and Y. A. Gu. Com-parison of three different interface mass transfer models used in the experimental measurement of solvent diffusivity in heavy oil. Jour- nal of Petroleum Science and Engineering, 2004, 44(3-4): 269- 282.
[41] A. K. Tharanivasan, C. D. Yang and Y. A. Gu. Measurements of molecular diffusion coefficients of carbon dioxide, methane, and pro-pane in heavy oil under reservoir conditions. Energy & Fuels, 2006, 20(6): 2509-2517.