树鼩原代肝细胞分离培养条件优化
Optimization of Primary Tupaia Hepatocytes’ Isolation and Culture Condition
DOI: 10.12677/BP.2013.31001, PDF, HTML, XML, 下载: 3,903  浏览: 13,227  国家自然科学基金支持
作者: 薛兰洁, 冯悦, 徐明, 夏雪山:昆明理工大学生命科学与技术学院;孙晓梅, 代解杰:中国医学科学院/北京协和医学院昆明医学生物学研究所;张华堂:重庆市科学技术研究院重庆生物技术研究所
关键词: 树鼩原代肝细胞分离培养优化Tree Shrews; Primary Hepatocytes Were Isolated and Cultured; Optimization
摘要: 目的:通过优化树鼩原代肝细胞的分离及体外培养条件,获得能够在体外进行长期稳定培养的树鼩原代肝细胞。方法:优化肝脏灌流液、酶消化液及细胞离心速度等原代肝细胞分离条件,培养细胞密度和培养基配方等原代肝细胞培养条件,用台盼蓝染色细胞计数法、MTT检测法及EDU标记法评价所分离、培养树鼩原代肝细胞的数量、活力及生长状态。结果:添加葡萄糖的D-Hank’s液作为灌流液,含有0.005 mol/L CaCl2及12 × 104 units/L胶原酶IV的D-Hank’s液作为消化液,37℃消化15~20分钟,所获得细胞梯度离心洗涤三次,可获得最高得率及活力的原代肝细胞。在Williams’ ME基础培养基中添加生长因子(10 ng/ml),葡萄糖(0.25%)、ITS-X(1 × multiple)、1%青链霉素及2% DMSO时可以维持树鼩原代肝细胞体外稳定增殖生长达42天。结论:树鼩原代肝细胞分离与体外培养条件的优化,可大大提高细胞得率,延长细胞稳定增殖生长时间,有助于以树鼩为模型研究肝细胞生理代谢特性及嗜肝病毒感染机制。
Abstract: Objectives: To get a long-term and stable culture of primary Tupaia hepatocytes (PTH) in vitro, the isolation and culture conditions were optimized through the single factor variation experiments. Methods: The isolation conditions of PTH, such as the formula of liver perfusate and enzyme digestion, the centrifugal factors, and the culture conditions such as cell culture density and medium component have been changed, and the counts, viability and growth status of cultured PTH was evaluated with trypan blue staining and cell counting, MTT detection and EDU labeling method. Results: We found that we can obtain liver cells at the highest yield and dynamic generation by perfusing with D-Hank’s solution with glucose, digesting with D-Hank’s solution containing 0.005 mol/L CaCl2 and 12 × 104 units/L collagenase IV at 37˚C for 15 to 20 minutes, washing the obtained cells by gradient centrifugation three times. In addition, the primary tree shrew hepatocytes cultured in Williams’ ME basic medium which supplemented with growth factors (10 ng/ml), glucose (0.25%), ITS-X (1 × multiple), 1% of penicillin and 2% DMSO were able to maintain stable growth up to 42 days in vitro. Conclusion: Therefore, the optimized isolation and culture conditions for primary Tupaia hepatocytes cannot only improve the cell yield greatly and prolong the stable cell proliferation and growth time, but also give a hand to the researches which study the physiological and metabolic properties of hepatocytes and the infection mechanism of hepatotropic virus in tree shrew.
文章引用:薛兰洁, 冯悦, 徐明, 孙晓梅, 张华堂, 代解杰, 夏雪山. 树鼩原代肝细胞分离培养条件优化[J]. 生物过程, 2013, 3(1): 1-8. http://dx.doi.org/10.12677/BP.2013.31001

参考文献

[1] S. Ishiko, A. Yoshida, F. Mori, et al. Early ocular changes in a tree shrew model of diabetes. Nihon Ganka Gakkai Zasshi, 1997, 101(1): 19-23.
[2] M. Steinhausen, H. Thederan, D. Nolinski, et al. Further evidence of tubular blockage after acute ischemic renal failure in Tupaia belangeri and rats. Virchows Archiv A, 1978, 381(1): 13- 34.
[3] G. Darai, L. Zoller, B. Matz, et al. Experimental infection and the state of viral latency of adult tupaia with herpes simplex virus type 1 and 2 and infection of juvenile Tupaia with temperature-sensitive mutants of HSV Type 2. Archives of Virology, 1980, 65(3-4): 311-318.
[4] Y. Amako, K. Tsukiyama-Kohara, A. Katsume, et al. Pathogenesis of hepatitis C virus infection in Tupaia belangeri. Journal of Virology, 2010, 84(1): 303-311.
[5] J. Kock, M. Nassal, S. MacNelly, et al. Efficient infection of primary tupaia hepatocytes with purified human and woolly monkey hepatitis B virus. Journal of Virology, 2001, 75(11): 5084- 5089.
[6] X. Xu, H. Chen, X. Cao, et al. Efficient infection of tree shrew (Tupaia belangeri) with hepatitis C virus grown in cell culture or from patient plasma. Journal of General Virology, 2007, 88(9): 2504-2512.
[7] Y. Tong, Y. Zhu, X. Xia, et al., Tupaia CD81, SR-BI, claudin-1, and occludin support hepatitis C virus infection. Journal of Virology, 2011, 85(6): 2793-2802.
[8] R. Dulbecco, M. Vogt. Plaque formation and isolation of pure lines with poliomyelitis viruses. Journal of Experimental Medicine, 1954, 99(2): 167-182.
[9] 刘友平, 丁慧荣, 何涛等. 一种简单、经济、高效的大量肝细胞培养方法[J]. 生物学通报, 2005, 40(1): 47-48.
[10] R. R. Mitry, R. D. Hughes, M. M. Aw, et al. Human hepatocyte isolation and relationship of cell viability to early graft function. Cell Transplant, 2003, 12(1): 69-74.
[11] 王琳, 徐建波, 田元等. 一种分离新生小鼠肝细胞的简单方法[J]. 中国优生与遗传杂志, 2007, 15(1): 10-12.
[12] M. N. Berry, D. S. Friend. High-yield preparation of isolated rat liver parenchymal cells: A biochemical and fine structural study. Journal of Cell Biology, 1969, 43(3): 506-520.
[13] R. H. Bhogal, J. Hodson, D. C. Bartlett, et al. Isolation of primary human hepatocytes from normal and diseased liver tissue: A one hundred liver experience. PLoS One, 2011, 6(3): e18222.
[14] L. Pichard, E. Raulet, G. Fabre, et al. Human hepatocyte culture. Methods in Molecular Biology, 2006, 320: 283-293.
[15] 李涛, 彭志海, 孙星等. 经肝静脉与门静脉离体灌注分离猪肝细胞的比较研究[J]. 肝脏, 2005, 10(1): 22-23.
[16] J. Gerlach, J. Brombacher, M. Smith, et al. High yield hepatocyte isolation from pig livers for investigation of hybrid liver support systems: Influence of collagenase concentration and body weight. Journal of Surgical Research, 1996, 62(1): 85-89.
[17] 闵峰, 郝飞, 刘冰等. 树鼩肝细胞的分离和培养[J]. 世界华人消化杂志, 2001, 9(6).
[18] 聂兴草, 方峰. 一种改良的小鼠原代肝细胞培养方法[J]. 同济医科大学学报, 2000, 29(2).
[19] S. N. Bhatia, U. J. Balis, M. L. Yarmush, et al. Effect of cell-cell interactions in preservation of cellular phenotype: Cocultivation of hepatocytes and nonparenchymal cells. FASEB Journal, 1999. 13(14): 1883-1900.
[20] K. Banaudha, J. M. Orenstein, T. Korolnek, et al., Primary hepatocyte culture supports hepatitis C virus replication: A model for infection-associated hepatocarcinogenesis. Hepatology, 2010, 51(6): 1922-32.
[21] S. R. Khetani, S. N. Bhatia. Microscale culture of human liver cells for drug development. Nature Biotechnology, 2008, 26(1): 120-126.
[22] S. Wang, D. Nagrath, P. C. Chen, et al. Three-dimensional primary hepatocyte culture in synthetic self-assembling peptide hydrogel. Tissue Engineering: Part A, 2008, 14(2): 227-236.
[23] A. Guitart, J. I. Riezu-Boj, E. Elizalde, et al. Hepatitis C virus infection of primary tupaia hepatocytes leads to selection of quasispecies variants, induction of interferon-stimulated genes and NF-kappaB nuclear translocation. Journal of General Virology, 2005, 86(11): 3065-3074.
[24] 张顶, 高丽, 张远旭等. 树鼩肝细胞体外分离培养体系的复建及主要影响因素分析[J]. 动物学研究, 2009, 30(1): 24-30.
[25] 张晶晶, 苏建家, 杨光. 两种原代树鼩肝细胞的分离和培养方法的研究[J]. 四川动物, 2009, 28(2): 170-171.
[26] J. J. Maher, D. M. Bissell, S. L. Friedman, et al. Collagen measured in primary cultures of normal rat hepatocytes derives from lipocytes within the monolayer. Journal of Clinical Investigation, 1988, 82(2): 450-459.
[27] E. E. Cable, H. C. Isom. Exposure of primary rat hepatocytes in long-term DMSO culture to selected transition metals induces hepatocyte proliferation and formation of duct-like structures. Hepatology, 1997, 26(6): 1444-1457.
[28] K. Mizuno, O. Higuchi, H. Tajima, et al. Cell density-dependent regulation of hepatocyte growth factor receptor on adult rat hepatocytes in primary culture. Journal of Biochemistry, 1993, 114(1): 96-102.