MS  >> Vol. 3 No. 2 (March 2013)

    风电叶片复合材料的湿热老化性能研究
    Study on the Hygrothermal Aging Properties of Wind Turbine Blade

  • 全文下载: PDF(1717KB) HTML    PP.67-71   DOI: 10.12677/MS.2013.32013  
  • 下载量: 2,478  浏览量: 5,819  

作者:  

张业明,于洪明,于良峰,胡宪明,刘克健:中国北车济南轨道交通装备有限责任公司研究院风电研究所

关键词:
风电叶片复合材料湿热老化力学性能Wind Turbine Blade; Composite Material; Hygrothermal Aging; Mechanical Properties

摘要:

采用加速老化仿真腐蚀实验,以风电叶片复合材料为研究对象,研究了去离子水和3.5 wt% NaCl溶液两种介质对复合材料力学性能的影响。研究结果表明,复合材料的吸湿率在去离子水中比在NaCl溶液中的大,导致其力学性能的下降也比在3.5% NaCl溶液中浸泡下降的大。通过试样表面和断口形貌分析说明了吸湿特征的产生和力学性能下降的原因。

The mechanical properties of composites immersed in distilled water and 3.5 wt% NaCl solution were studied by an accelerated aging method using wind turbine blades as the research object. The results show that the absorption rate of the composite materials immersed in distilled is higher than that immersed in 3.5 wt% NaCl solution, resulting in the decline of the mechanical properties of the composites immersed in distilled is higher than that in 3.5 wt% NaCl solution. The reasons for the mixture absorption characteristics and the decline of the mechanical properties were explained by SEM analysis of the surface and fracture morphology of the samples.

文章引用:
张业明, 于洪明, 于良峰, 胡宪明, 刘克健. 风电叶片复合材料的湿热老化性能研究[J]. 材料科学, 2013, 3(2): 67-71. http://dx.doi.org/10.12677/MS.2013.32013

参考文献

[1] 江泽慧, 孙正军, 任海青. 先进生物质复合材料在风电叶片中的应用[J]. 复合材料学报, 2006, 26(3): 127-129.
[2] 黄晓东, 江泽慧, 孙正军. 风机叶片的发展概述和趋势[J]. 太阳能, 2007(4): 37-39.
[3] 薛桁, 朱瑞兆, 杨振斌等. 中国风能资源贮量估算[J]. 太阳能学报, 2001, 22(2): 167-170.
[4] 钟伟强. 国内外风力发电的概述[J]. 风电技术, 2005(5): 44- 46.
[5] 李晓骏, 许凤和, 陈新文. 先进聚合物基复合材料的热氧老化研究[J]. 材料工程, 1999, 12: 19-22.
[6] 过梅丽, 肇研, 许凤和等. 先进聚合物基复合材料的老化研究-I. 热氧老化[J]. 航空学报, 2000, 21(4): 62-65.
[7] 刘建华, 曹东, 张晓云, 陆峰. 树脂基复合材料T300/5405的吸湿性能及湿热环境对力学性能的影响[J]. 航空材料学报, 2010, 30(4): 75-80.
[8] G. Bhavesh, P. S. Raman and N. M. Toshio. Degradation of carbon fiber-reinforced epoxy composites by ultraviolet radiation and condensation. Journal of Composite Materials, 2002, 36(24): 2713-2733.
[9] R. Selzer, K. Friedrich. Influence of water up-take on interlaminar fracture properties of carbon fiber-reinforced polymer composites. Journal of Materials Science, 1995, 30(2): 334-338.
[10] R. Selzer, K. Friedrich. Mechanical properties and failure behaviour of carbon fiber-reinforced polymer composites under the influence of moisture. Composites, 1997, 28A: 595-604.
[11] 过梅丽, 肇研. 航空航天结构复合材料湿热老化机理的研究[J]. 宇航材料工艺, 2002, 4: 51-54.
[12] X. D. Tang, J. D. Whitcomb, Y. M. Li, et al. Micromechanics modeling of moisture diffusion in woven composites. Composites Science and Technology, 2005, 65(6): 817-826.
[13] C. Leem, A. Peppasn. Models of moisture transport and moisture induced stresses in epoxy composites. Journal of Composite Materials, 1993, 27(12): 1146-1171.
[14] A. Tounsi, K. H. Amaar and E. A. Adda-Bedia. Analysis of transverse cracking and stiffness loss in cross-ply laminates with hydrothermal conditions. Computational Materials Science, 2005, 32(2): 167-174.
[15] S. Nadunv, P. K. Snha. Nonlinear finite element analysis of laminated composite shells in hydrothermal environments. Composite Structures, 2005, 69(4): 387-395.
[16] V. Pavankiran, N. Toshio and P. S. Paman. Inverse analysis for transient moisture diffusion through fiber-reinforced composites. Acta Materialia, 2003, 51(1): 177-193.