秦岭老君山森林土壤微生物量碳氮的分布
Distribution of Microbial Biomass Carbon and Nitrogen in Forest Soil of Laojun Mountain in Qinling Mountains
摘要: 土壤微生物量是陆地生态系统碳循环的重要组成部分,在森林生态系统物质循环和能量转化中占有非常重要的地位。本研究以秦岭余脉八百里伏牛山的主峰老君山为研究对象,探讨了森林土壤中微生物量碳、氮含量随着海拔与土壤深度变化的分布状况。结果表明,海拔1300 m1600 m1900 m土壤微生物量碳含量分别是501.68 mg/kg861.75 mg/kg980.93 mg/kg;其土壤微生物量氮含量分别是5.50 mg/kg5.94 mg/kg7.07 mg/kg。土壤微生物碳随土层深度的变化,则是在每个海拔的规律则是一致的,都随土壤层的加深而增加。在海拔1300 m1900 m时,30~45 cm土层土壤微生物量氮含量显著高于其它3土层;而在海拔1600 m时,则是45~60 cm土层最高,且显著高于其它土层。总体而言,土壤微生物量碳、氮含量随着海拔的增高而增加;下层土壤(30~60 cm)微生物碳、氮含量高于上层土壤(0~30 cm) Soil microbial biomass, as an important portion of terrestrial ecological carbon budget, plays a key role in material cycles and energy transformation in forest ecosystems. The distribution of soil microbial biomass carbon (SMBC) and nitrogen (SMBN) along the variations of elevation and soil depth was studied in forest soils of Laojun Mountain, the highest peak of Funiu Mountain in Qin Mountains. The concentrations of SMBC were 501.68, 861.75 and 980.93 mg/kg at elevations of 1300m,1600m, and1900m, respectively. The concentrations of SMBN were 5.50, 5.94 and 7.07 mg/kg at elevations1300m,1600m, and1900m, respectively. The SMBC increased with soil depth regardless of elevations: the SMBC concentration was the highest at 30 -45 cmdepth at elevations of 1300 and1900m. The highest SMBC concentration was present at 45 -60 cmdepth at the elevation of1900 m. The tendency of SMBN was accordant at three sites of different elevations, which increased with soil depth. In summary, the SMBC and SMBN increased with the elevation, and the SMBC and SMBN were higher at the depth of 30 -60 cmthan the 0 -30 cmdepth.
文章引用:童笑笑, 石兆勇, 李乐, 贺振洲, 尹越, 黄绍琳, 张爱玲. 秦岭老君山森林土壤微生物量碳氮的分布[J]. 微生物前沿, 2013, 2(1): 1-4. http://dx.doi.org/10.12677/AMB.2013.21001

参考文献

[1] J. L. Smith, E. A. Paul. The significance of soil microbial biomass estimation. In: J. M. Bollag, G. Stotzky. Soil biochemistry. New York: Marcel Dekker, Inc., 1991: 359-396.
[2] 何振立. 土壤微生物量及其在养分循环和环境质量评价中的意义[J]. 土壤, 1997, 29(2): 61-69.
[3] 陈国潮, 何振立, 姚槐应. 红壤微生物量的季节性变化研究 [J]. 浙江大学学报(农业与生命科学版), 1999, 25(4): 387-388.
[4] H. H. Ruan, X. M. Zou, J. K. Zimmerman, et al. Asynchronous fluctuation of soil microbial biomass and plant litter fall in a tropical wet forest. Plant and Soil, 2004, 260(1-2): 147-154.
[5] 何容, 汪家社, 施政等. 武夷山植被带土壤微生物量沿海拔梯度的变化. 生态学报, 2009, 29(9): 5138-5144.
[6] 何容. 武夷山亚热带森林土壤微生物量沿海拔高度的变化[D]. 南京林业大学, 2007.
[7] 王丰. 武夷山不同海拔植被带土壤微生物量碳、氮、磷研究[D]. 南京林业大学, 2008.
[8] J. Wu, R. G. Joergensen, B. Pommerening, et al. Measurement of soil microbial biomass C by fumigation-extraction—An automated procedure. Soil Biology & Biochemistry, 1990, 22(8): 1167-1169.
[9] P. C. Brookes, A. Landman, G. Pruden, et al. Chloroform fumigation and the release of soil nitrogen: A rapid extraction method to measure microbial biomass nitrogen in soil. Soil Biology & Biochemistry, 1985, 17(6): 837-842.
[10] 汪杏芬, 李世仪, 白克智等. CO2倍增对植物生长和土壤微生物生物量碳、氮的影响[J]. 植物学报, 1998, 40(12): 1169-1172.
[11] 余彬彬, 金则新, 李钧敏. 常绿阔叶林次生演替系列群落土壤微生物生物量及酶活性[J]. 西北林学院学报, 2008, 23(5): 30-33.
[12] 王晖, 莫江明, 鲁显楷, 薛璟花, 李炯, 方运霆. 南亚热带森林土壤微生物量碳对氮沉降的响应[J]. 生态学报, 2008, 28(2): 470-478.
[13] N. B. Devi, P. S. Yadava. Seasonal dynamics in soil microbial biomass C, N and P in a mixed-oak forest ecosystem of Manipur, North-East India. Applied Soil Ecology, 2006, 31(3): 220-227.
[14] D. A. Wardle. Controls of temporal variability of the soil microbial biomass: A global synthesis. Soil Biology & Bioche- mistry, 1998, 30(13): 1627-1637.