Fe/C微电解法提高垃圾渗滤液的可生化性
Fe/C Micro Electrolysis Improve Percolate Biodegradability
DOI: 10.12677/AMB.2013.21003, PDF, HTML, XML, 下载: 3,227  浏览: 10,285 
作者: 靳艳文*, 朱秀慧, 玄婉茹:辽宁科技大学,鞍山
关键词: Fe/C微电解圾渗滤液可生化性Fe/C Micro Electrolysis; Landfill Leachate; Biodegradability
摘要: Fe/C微电解法是以金属腐蚀的原理处理垃圾渗滤液的一种高级氧化技术,通过铁屑在渗滤液中同CuCN等物质发生发应,产生氧化还原反应,形成絮凝物质从渗滤液中分离。在厌氧出水经Fe/C微电解进一步提高垃圾渗滤液可生化性的研究中,控制反应在酸性条件下进行,pH调节在5.0左右,Fe/C(质量比)1:1,调节搅拌转数为150 r/min,反应时间为60 min,出水的BOD5/CODCr(B/C)可达到0.3~0.4Fe/C微电解法处理垃圾渗滤液,其B/C平均提高到0.365,平均净提高0.292,可生化性大大增强,有利于后续生物处理的进行。 Fe/C micro electrolysis is an advanced oxidation technology based on the principle of metal corrosion landfill leachate , through the iron should be reacted with Cu, C, N material in the leachate, oxidation-reduction reaction, and form the flocculating substance isolated from landfill leachate. Studying on improving landfill leachate biodegradability of the anaerobic effluent by Fe/C micro electrolytic, controlling the reaction under acidic conditions, the pH is about 5.0, the Fe/C ratio (mass ratio) is 1:1, the reaction time is 60 min, BOD5/CODCr (B/C) can reach 0.3 to 0.4 at last. Fe/C micro electrolysis deal with Landfill Leachate, its B/C reaches 0.365, the average net increases 0.292, its biodegradability can be greatly enhanced and it is conducive to the conduct of the subsequent biological treatment.

文章引用:靳艳文, 朱秀慧, 玄婉茹. Fe/C微电解法提高垃圾渗滤液的可生化性[J]. 微生物前沿, 2013, 2(1): 11-15. http://dx.doi.org/10.12677/AMB.2013.21003

参考文献

[1] 梧海军. 化学法在处理垃圾渗滤液中的应用[J]. 技术研发, 2012, 19(4): 62-63.
[2] 夏素兰, 周勇, 曹丽淑等. 垃圾渗滤液氨氮吹脱研究[J]. 环境科学与术, 2000, 3: 26-29.
[3] 尚爱安, 徐美燕, 孙贤波等. 物化生化组合工艺处理垃圾渗滤液[J]. 华东理工大学学报(自然科学版), 2005, 31(6): 756-759.
[4] X. Liu, X. M. Li, Q. Yang, et al. Landfill percolate pretreatment by coagulation-flocculation process using iron-based coagulants: Optimization by response surface methodology. Chemical Engineening Journal, 2012, 200-202: 39-51.
[5] Y. Y. Wu, S. Q. Zhou, F. H. Qin, et al. Modeling physical and oxidative removal properties of Feton process for treatment of landgill leachate using response surface methodology (RSM). Journal of Hazardous Materials, 2012, 180(1-3): 456-465.
[6] W. Li, T. Hua, Q. X. Zhou, et al. Treatment of stabilized landfill leachate by the combined process of coagulation/flocculation and powder activated carbon adsorption. Desalination, 2010, 264(1-2): 56-62.
[7] J. Berrueta, L. Castrillon. Anaerobic treatment of leachates in UASB reactors. Journal of Chemical Technology and Bio- technology, 1992, 54(1): 33-37.
[8] H. Hasar, S. A. Unsal, et al. Stripping/flocculation/membrane bioreactor/reverse osmosis treatment of municipal landfill leachate. Journal of Hazardous Material, 2009, 171(1-3): 309- 317.
[9] 郑江宁. 垃圾渗滤液处理难点及其对策研究[J]. 商品与质量: 学术观察, 2012, 10: 74-76.
[10] 国家环境保护局, 水和废监测分析方法编委会. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002.
[11] 孙旭辉, 贾宇宇, 马军等. 微电解——Fenton联合工艺处理硝苯废水效能研究[J]. 水处理技术, 2009, 35(1): 74-78.