AMB  >> Vol. 2 No. 1 (March 2013)

    戊型肝炎病毒的基因组结构及生物学功能研究进展
    Development of Genomic Structure and Function of Hepatitis E Virus

  • 全文下载: PDF(381KB) HTML   XML   PP.32-36   DOI: 10.12677/AMB.2013.21007  
  • 下载量: 2,466  浏览量: 11,463   国家自然科学基金支持

作者:  

雷雅昕,刘鹏,王玲:北京大学医学部病原生物学系和感染病中心,北京

关键词:
戊型肝炎病毒基因结构开放读码框顺反应元件Hepatitis E Virus (HEV); Gene Structure; Open Reading Frame (ORF); Cis-Reactive Elements (CRE)

摘要:

戊型肝炎病毒(HEV)是发展中国家引起急性病毒肝炎的重要病原体之一。HEV4个主要基因型,1型和2型只感染人,通过污染的水源引起暴发流行;3型和4型属于人畜共患病原体,常引起散发病例。为进一步阐明HEV的致病和跨种系传播机理,本文就近年来在HEV基因及其蛋白质的生物学特性和功能研究方面取得的进展进行综述。
Hepatitis E virus (HEV) is one of the most important pathogens of acute viral hepatitis prevailing in developing countries. There are four major genotypes of mammalian HEV, genotype 1 and 2 are restricted to human infection, and induce epidemic hepatitis E which is mainly transmitted by contaminated water; whereas genotype 3 and 4 are zoonotic causing sporadic cases which are common in developed countries. In recent years, much more attention has been paid to the structures of viral genes and the functions of viral proteins. The research progress achieved in such field will help us uncover the veil of HEV in pathogenesis and infection.

文章引用:
雷雅昕, 刘鹏, 王玲. 戊型肝炎病毒的基因组结构及生物学功能研究进展[J]. 微生物前沿, 2013, 2(1): 32-36. http://dx.doi.org/10.12677/AMB.2013.21007

参考文献

[1] M. S. Balayan, A. G. Andjaparidze, S. S. Savinskaya, et al. Evidence for a virus in non-A, non-B hepatitis transmitted via the fecal-oral route. Intervirology, 1983, 20(1): 23-31.
[2] X. J. Meng. Hepatitis E virus: Animal reservoirs and zoonotic risk. Veterinary Microbiology, 2010, 140(3-4): 256-65.
[3] H. Ma, L. Zheng, Y. Liu, et al. Experimental infection of rabbits with rabbit and genotypes 1 and 4 hepatitis E viruses. PLoS One, 2010, 5(2): e9160.
[4] J. M. Peron, C. Bureau, H. Poirson, et al. Fulminant liver failure from acute autochthonous hepatitis E in France: Description of seven patients with acute hepatitis E and encephalopathy. Journal of Viral Hepatitis, 2007, 14(5): 298-303.
[5] N. Kamar, C. Garrouste, E. B. Haagsma, et al. Factors associated with chronic hepatitis in patients with hepatitis E virus infection who have received solid organ transplants. Gastroenterology, 2011, 140(5): 1481-9.
[6] F. F. Huang, Z. F. Sun, S. U. Emerson, et al. Determination and analysis of the complete genomic sequence of avian hepatitis E virus (avian HEV) and attempts to infect rhesus monkeys with avian HEV. Journal of General Virology, 2004, 85(6): 1609- 1618.
[7] E. V. Koonin, A. E. Gorbalenya, M. A. Purdy, et al. Computer- assisted assignment of functional domains in the nonstructural polyprotein of hepatitis E virus: Delineation of an additional group of positive-strand RNA plant and animal viruses. Proceedings of the National Academy of Sciences, 1992, 89(17): 8259-8263.
[8] T. C. Li, Y. Yamakawa, K. Suzuki, et al. Expression and self- assembly of empty virus-like particles of hepatitis E virus. Journal of Virology, 1997, 71(10): 7207-7213.
[9] S. U. Emerson, H. T. Nguyen, U. Torian, et al. Release of genotype 1 hepatitis E virus from cultured hepatoma and polarized intestinal cells depends on open reading frame 3 protein and requires an intact PXXP motif. Journal of Virology, 2010, 84(18): 9059-9069.
[10] D. Cao, Y. W. Huang and X. J. Meng. The nucleotides on the stem-loop RNA structure in the junction region of the hepatitis E virus genome are critical for virus replication. Journal of Virology, 2010, 84(24): 13040-13044.
[11] S. U. Emerson, M. Zhang, X. J. Meng, et al. Recombinant hepatitis E virus genomes infectious for primates: importance of capping and discovery of a Cis-reactive element. Proceedings of the National Academy of Sciences, 2001, 98(26): 15270-15275.
[12] J. Magden, N. Takeda, T. Li, et al. Virus-specific mRNA capping enzyme encoded by hepatitis E virus. Journal of Virology, 2001, 75(14): 6249-6455.
[13] Y. A. Karpe and K. S. Lole. RNA 5’-triphosphatase activity of the hepatitis E virus helicase domain. Journal of Virology, 2010, 84(18): 9637-9641.
[14] Y. A. Karpe and K. S. Lole. NTPase and 5’ to 3’ RNA duplex-unwinding activities of the hepatitis E virus helicase domain. Journal of Virology, 2010, 84(7): 3595-3602.
[15] S. L. Ropp, A. W. Tam, B. Beames, et al. Expression of the hepatitis E virus ORF1. Archives of Virology, 2000, 145(7): 1321-1337.
[16] D. Sehgal, S. Thomas, M. Chakraborty, et al. Expression and processing of the Hepatitis E virus ORF1 nonstructural polyprotein. Journal of Virology, 2006, 3: 38.
[17] Y. A. Karpe and K. S. Lole. Deubiquitination activity associated with hepatitis E virus putative papain-like cysteine protease. Journal of General Virology, 2011, 92(9): 2088-2092.
[18] S. Agrawal, D. Gupta and S. K. Panda. The 3’ end of hepatitis E virus (HEV) genome binds specifically to the viral RNA- dependent RNA polymerase (RdRp). Virology, 2001, 282(1): 87-101.
[19] S. Rehman, N. Kapur, H. Durgapal, et al. Subcellular locali- zation of hepatitis E virus (HEV) replicase. Virology, 2008, 370(1): 77-92.
[20] R. S. Pudupakam, Y. W. Huang, T. Opriessnig, et al. Deletions of the hypervariable region (HVR) in open reading frame 1 of hepatitis E virus do not abolish virus infectivity: Evidence for attenuation of HVR deletion mutants in vivo. Journal of Virology, 2009, 83(1): 384-395.
[21] R. S. Pudupakam, S. P. Kenney, L. Cordoba, et al. Mutational analysis of the hypervariable region of hepatitis e virus reveals its involvement in the efficiency of viral RNA replication. Journal of Virology, 2011, 85(19): 10031-10040.
[22] X. J. Meng. Recent advances in Hepatitis E virus. Journal of Viral Hepatitis, 2010, 17(3): 153-161.
[23] S. Jameel, M. Zafrullah, M. H. Ozdener, et al. Expression in animal cells and characterization of the hepatitis E virus structural proteins. Journal of Virology, 1996, 70(1): 207-16.
[24] M. Surjit, S. Jameel and S. K. Lal. Cytoplasmic localization of the ORF2 protein of hepatitis E virus is dependent on its ability to undergo retrotranslocation from the endoplasmic reticulum. Journal of Virology, 2007, 81(7): 3339-3345.
[25] J. Graff, Y. H. Zhou, U. Torian, et al. Mutations within potential glycosylation sites in the capsid protein of hepatitis E virus prevent the formation of infectious virus particles. Journal of Virology, 2008, 82(3): 1185-1194.
[26] M. Surjit, S. Jameel and S. K. Lal. The ORF2 protein of hepatitis E virus binds the 5’ region of viral RNA. Journal of Virology, 2004, 78(1): 320-328.
[27] Z. Z. Zheng, J. Miao, M. Zhao, et al. Role of heat-shock protein 90 in hepatitis E virus capsid trafficking. Journal of Viral Hepatitis, 2010, 91(7): 1728-1736.
[28] H. Yu, S. Li, C. Yang, et al. Homology model and potential virus-capsid binding site of a putative HEV receptor Grp78. Journal of Molecular Modeling, 2011, 17(5): 987-995.
[29] M. Kalia, V. Chandra, S. A. Rahman, et al. Heparan sulfate proteoglycans are required for cellular binding of the hepatitis E virus ORF2 capsid protein and for viral infection. Journal of Virology, 2009, 83(24): 12714-12724.
[30] D. J. Schofield, J. Glamann, S. U. Emerson, et al. Identification by phage display and characterization of two neutralizing chimpanzee monoclonal antibodies to the hepatitis E virus capsid protein. Journal of Virology, 2000, 74(12): 5548-5555.
[31] J. Meng, X. Dai, J. C. Chang, et al. Identification and characterization of the neutralization epitope(s) of the hepatitis E virus. Virology, 2001, 288(2): 203-211.
[32] Y. H. Zhou, R. H. Purcell and S. U. Emerson. An ELISA for putative neutralizing antibodies to hepatitis E virus detects antibodies to genotypes 1, 2, 3, and 4. Vaccine, 2004, 22(20): 2578-2585.
[33] J. Zhang. Randomized-controlled phase II clinical trial of a bacterially expressed recombinant hepatitis E vaccine. Vaccine, 2009, 27: 1869-1874.
[34] M. P. Shrestha. Safety and efficacy of a recombinant hepatitis E vaccine. The New England Journal of Medicine, 2007, 356: 895-903.
[35] H. Zhang, X. Dai, X. Shan, et al. The Leu477 and Leu613 of ORF2-encoded protein are critical in forming neutralization antigenic epitope of hepatitis E virus genotype 4. Cellular & Molecular Immunology, 2008, 5(6): 447-456.
[36] J. Graff, U. Torian, H. Nguyen, et al. A bicistronic subgenomic mRNA encodes both the ORF2 and ORF3 proteins of hepatitis E virus. Journal of Virology, 2006, 80(12): 5919-5926.
[37] I. Ahmad, R. P. Holla and S. Jameel. Molecular virology of hepatitis E virus. Virus Research, 2011, 161(1): 47-58.
[38] M. Zafrullah, M. H. Ozdener, S. K. Panda, et al. The ORF3 protein of hepatitis E virus is a phosphoprotein that associates with the cytoskeleton. Journal of Virology, 1997, 71(12): 9045-9053.
[39] A. Kar-Roy, H. Korkaya, R. Oberoi, et al. The hepatitis E virus open reading frame 3 protein activates ERK through binding and inhibition of the MAPK phosphatase. The Journal of Biological Chemistry, 2004, 279(27): 28345-28357.
[40] H. Kannan, S. Fan, D. Patel, et al. The hepatitis E virus open reading frame 3 product interacts with microtubules and interferes with their dynamics. Journal of Virology, 2009, 83(13): 6375-6382.
[41] R. Ratra, A. Kar-Roy and S. K. Lal. The ORF3 protein of hepatitis E virus interacts with hemopexin by means of its 26 amino acid N-terminal hydrophobic domain II. Biochemistry, 2008, 47(7): 1957-1969.
[42] Y. Zhu, Z. Li and C. Bu. The open reading frame 2 initiation site of genotype 4 hepatitis E virus (HEV). Infection, Genetics and Evolution, 2012, 12(3): 502-503.
[43] S. Tyagi, H. Korkaya, M. Zafrullah, et al. The phosphorylated form of the ORF3 protein of hepatitis E virus interacts with its non-glycosylated form of the major capsid protein, ORF2. The Journal of Biological Chemistry, 2002, 277(25): 22759-22767.
[44] K. Yamada, M. Takahashi, Y. Hoshino, et al. ORF3 protein of hepatitis E virus is essential for virion release from infected cells. Journal of General Virology, 2009, 90(8): 1880-1891.
[45] M. Surjit, R. Oberoi, R. Kumar, et al. Enhanced alpha1 micro- globulin secretion from Hepatitis E virus ORF3-expressing human hepatoma cells is mediated by the tumor susceptibility gene 101. The Journal of Biological Chemistry, 2006, 281(12): 8135-8142.
[46] H. Ma, X. Song, T. J. Harrison, et al. Hepatitis E virus ORF3 antigens derived from genotype 1 and 4 viruses are detected with varying efficiencies by an anti-HEV enzyme immunoassay. Journal of Medical Virology, 2011, 83(5): 827-832.
[47] H. Ma, X. Song, T. J. Harrison, et al. Immunogenicity and efficacy of a bacterially expressed HEV ORF3 peptide, assessed by experimental infection of primates. Archives of Virology, 2009, 154(10): 1641-1648.
[48] J. Graff, H. Nguyen, C. Kasorndorkbua, et al. In vitro and in vivo mutational analysis of the 3’-terminal regions of hepatitis e virus genomes and replicons. Journal of Virology, 2005, 79(2): 1017- 1026.
[49] J. Graff, H. Nguyen, C. Yu, et al. The open reading frame 3 gene of hepatitis E virus contains a Cis-reactive element and encodes a protein required for infection of macaques. Journal of Virology, 2005, 79(11): 6680-6689.