OE  >> Vol. 3 No. 1 (March 2013)

    一维倾斜载频条纹测量径向畸变
    Radial Distortion Measurement Using One Dimensional Inclined Fringe Pattern and Gabor Transform

  • 全文下载: PDF(1335KB)    PP.10-15   DOI: 10.12677/OE.2013.31003  
  • 下载量: 2,298  浏览量: 7,721   科研立项经费支持

作者:  

李海,谭穗妍,刘建斌:华南农业大学应用物理系

关键词:
信息光学一维倾斜载频条纹条纹相位分析伸缩Gabor变换畸变测量Information Optics; One Dimensional Inclined Carrier-Fringe Pattern; Phase Analysis of Fringe Pattern; Dilating Gabor Transform; Distortion Measurement

摘要:

为了测量光学成像系统的径向畸变并校正畸变图像,提出基于一维任意方向(倾斜)载频条纹相位分析联合伸缩Gabor变换的测量方法,通过测量径向畸变调制相位获得径向位置畸变分布。首先,利用一维任意方向正弦载频条纹作为测量模板,通过成像系统采集的畸变图像就是变形光栅条纹;接着考虑径向畸变的中心对称性,为了获得径向位置畸变分布,经畸变条纹中心点沿某个方向提取一行像素,采用伸缩Gabor窗口傅立叶变换直接从中心零畸变点提取并重构出理想光栅条纹像基频信息,应用Gabor窗口傅立叶变换对该方向的变形光栅条纹和理想光栅条纹进行相位分析,获得该方向的径向畸变调制相位分布并换算为径向位置畸变位置分布规律。最后采用双线性插值灰度重建对畸变图像进行校正。给出详细的理论分析过程,实验结果表明该方法是可行的。

For the purpose of measuring the radial distortion in optical imaging systems and correcting distorted images, based on phase analysis of fringe pattern, a new method using one dimensional inclined carrier-fringe pattern and Dilating Gabor transform is proposed, and the radial distortion distribution is obtained from the radial modulated phase distribution. Firstly, one dimensional inclined sinusoidal carrier-fringe pattern in arbitrary direction is used as measuring template, and a deformed grating pattern regarded as a distorted image is obtained by the optical imaging system. Then, considering the radial symmetry of radial distortion, one row of pixels along a certain direction is extracted from deformed fringe pattern; since there is no distortion at the center of the row, from which the fundamental frequency information including instantaneous frequency and phase, of the ideal pattern image, is extracted using Dilating Gabor transform, and the ideal image of fringe pattern along the above direction is constructed by use of an inverse Fourier Transform to measure the radial distortion. Phase analysis of the above row of deformed fringe pattern and its ideal fringe pattern is carried out using Dilating Gabor transform. The radial modulated phase distribution is converted the radial distortion distribution. Finally, by use of bilinearity interpolation, the calibrated image is reconstructed. Theoretical analysis and experimental results are presented to demonstrate the validity of the above method.

文章引用:
李海, 谭穗妍, 刘建斌. 一维倾斜载频条纹测量径向畸变[J]. 光电子, 2013, 3(1): 10-15. http://dx.doi.org/10.12677/OE.2013.31003

参考文献

[1] 余俊, 林家明, 杨建宇, 张旭升, 沙定国. 基于新型靶的CCD摄像系统畸变测量与校正[J]. 光学学报, 2007, 27(8): 1440- 1442.
[2] J. M. Lin, M. L. Xing, D. G. Sha, et al. Distortion measurement of CCD imaging system with short focal length and large-field objective. Optics and Lasers in Engineering, 2005, 43(10): 1137- 1144.
[3] J. Y. Weng, P. Cohen and M. Herniou. Camera calibration with distortion models and accuracy evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1992, 14(10): 965- 980.
[4] 牛建军, 刘上乾, 姚荣辉, 郑毅, 冀芳等. 高准确度光电成橡测量系统图像畸变校正算法[J]. 光子学报, 2006, 35(9): 1317- 1819.
[5] 孔斌, 方廷健. 一种简单而精确的径向畸变标定方法[J]. 中国图像图形学报, 2004, 9(4): 429-434.
[6] 行麦玲, 刘贱平, 林家明, 沙定国, 苏大图. 大视场短焦距镜头CCD摄像系统的畸变校正[J]. 光学技术, 2003, 29(3): 377- 379.
[7] 王占斌, 赵辉, 陶卫, 唐燕. 广角桶形畸变的样条函数修正方法[J]. 光电工程, 2008, 35(4): 140-144.
[8] J.-G. Zhong, J.-W. Weng. Dilating gabor transform for the fringe analysis of 3-D shape measurement. Optical Engineering, 2004, 43(4): 895-899.
[9] 毛先富, 陈文静, 苏显渝. 傅里叶变换轮廓术新理论研究[J]. 中国激光, 2007, 34(1): 97-102.
[10] M. Takeda, K. Mutoh. Fourier transform profilome-try for the auto- matic measurement of 3-D object shapes. Applied Optics, 1983, 22(24): 3977-3982.