基于MEMS工艺的高增益低副瓣太赫兹波纹喇叭天线设计
High Gain and Low Side-Lobe Thz Corrugated Horn Antenna Based on MEMS Technology
DOI: 10.12677/JA.2013.21001, PDF, HTML, XML,  被引量 下载: 4,450  浏览: 14,597  国家自然科学基金支持
作者: 高子健, 刘 埇, 吕 昕:北京理工大学信息与电子学院电子工程系,毫米波与太赫兹技术北京市重点实验室,北京;司黎明
关键词: 太赫兹微电子机械系统(MEMS)工艺喇叭天线波纹开槽 Terahertz (Thz); Micro-Electro-Mechanical-Systems (MEMS) Technology; Horn Antenna; Corrugated Groove
摘要: 本文提出了一种基于微电子机械系统(MEMS)工艺的高增益低副瓣太赫兹波纹喇叭天线设计方法。利用三维全波有限元电磁仿真软件Ansys HFSS,对角锥喇叭的波纹开槽尺寸和条数进行参数分析和优化设计,获得了在275 GHz至580 GHz的有效带宽内(回波损耗小于10 dB)增益超过8 dB和副瓣电平小于−13 dB的太赫兹波纹喇叭天线。结果表明波纹开槽可有效提高太赫兹喇叭天线增益并压低副瓣,同时也说明MEMS工艺可有效用于太赫兹功能器件设计。 A novel high gain and low side-lobe terahertz (THz) corrugated horn antenna based on Micro-electro-mechanical-systems (MEMS) technology is proposed. Properties of the antenna for different corrugated groove sizes and numbers are investigated and optimized by using three-dimensional (3D) electromagnetic full-wave finite element method (FEM) simulation software package Ansys High Frequency Structure Simulator (HFSS). The gain and side-lobe of the THz antenna can be designed greater than 8 dB and less than −13 dB, respectively in the band wide for 10 dB return loss from 275 GHz to 580 GHz. The results show that the corrugated groove can effectively improve the gain and depress the side-lobe of the horn antenna at the THz frequency range. Meantime, the THz functional devices could be effectively fabricated using MEMS technology.

Abstract:
文章引用:高子健, 司黎明, 刘埇, 吕昕. 基于MEMS工艺的高增益低副瓣太赫兹波纹喇叭天线设计[J]. 天线学报, 2013, 2(1): 1-6. http://dx.doi.org/10.12677/JA.2013.21001

参考文献

[1] P. H. Siegel. Terahertz technology. IEEE Transactions on Mi-crowave Theory and Technology, 2002, 50: 910.
[2] B. Ferguson, X. C. Zhang. Materials for terahertz science and technology. Nature Materials, 2002, 1(1): 26-33.
[3] M. Tonouchi. Cutting-edge terahertz technology. Nature Photonics, 2007, 1(2): 97-105.
[4] 司黎明, 侯吉旋, 刘埇, 吕昕. 基于负微分电阻碳纳米管的太赫兹波有源超材料特性参数提取[J]. 物理学报, 2013, 62(3): 037806.
[5] L. M. Si, Y. Liu, H. Lu, H. J. Sun, X. Lv and W. Zhu. Experimental realization of high transmittance THz 90˚-bend wave- guide using EMXT structure. IEEE Photonics Technology Letters, 2013, 25(5): 519-522.
[6] L. M. Si, X. Lv. Terahertz waves hairpin microstrip band-pass filter and its application to overlaid dielectric material detection. Modern Physics Letter B, 2008, 22(29): 2843-2848.
[7] R. N. Dean, P. C. Nordine and C. G. Christodoulou. 3-D helical THz antennas. Microwave and Optical Technology Letters, 2000, 24(2): 106-111.
[8] J. X. Chen, W. Hong, H. J. Tang, P. P. Yaw, L. Zhang, G. Q. Yang, D. B. Hou and K. Wu. Silicon based millimeter wave and THz ICs. IEICE Transactions on Electronics, 2012, 7: 1134-1140.
[9] L. M. Si, H. J. Sun and X. Lv. Thz leaky-wave antenna with high-directivity and beam-steering using CPW CRLH metamaterial resonators. Proceedings of the 3rd International Symposium on Photo-electronic Detection and Imaging, Beijing, 2009, 7385(1): 1-8.
[10] L. M. Si, Y. Yuan, H. Sun and X. Lv. Characterization and application of planar terahertz narrow bandpass filter with metamaterial resonators. International Workshop on Metamaterials, Nanjing, 2008: 351-354.
[11] L .M. Si, Y. Liu, S. Zhu and H. Xin. Integrated THz horn antenna using EBG structures. USNC-URSI National Radio Science Meeting, Boulder: University of Colorado at Boulder, 2011.
[12] Y. Liu, L. M. Si, S. Zhu and H. Xin. Experimental realization of an integrated THz electromagnetic crystals (EMXT) H-plane horn antenna. Electronics Letters, 2011, 47(2): 80-82.
[13] L. M. Si, H. Sun and X. Lv. Theoretical investigation of terahertz amplifier by carbon nanotubes within transmission line metamaterials. Microwave and Optical Technology Letters, 2011, 53(4): 515-518.
[14] S. S. Akarca-Biyikli, I. Bulu and E. Ozbay. Enhanced transmission of microwave radiation in one-dimensional metallic gratings with subwavelength aperture. Applied Physics Letters, 2004, 85(7): 1098-1100.
[15] M. Beruete, I. Campillo, J. S. Dolado, J. E. Rodriguez-Seco, E. Perea and M. Sorolla. Enhanced microwave transmission and beaming using a subwavelength slot in corrugated plate. IEEE Antennas and Wireless Propagation Letters, 2004, 3: 328-331.