全球变暖背景下中国东部季节性冻土的变化特征及其与季风活动的可能联系
Variation of Seasonal Frozen Soil in East China and Their Association with Monsoon Activity under the Background of Global Warming
DOI: 10.12677/CCRL.2013.22008, PDF, HTML,  被引量 下载: 4,106  浏览: 13,542  国家自然科学基金支持
作者: 李 倩, 陈海山*:南京信息工程大学气象灾害教育部重点实验室,南京
关键词: 中国东部季节冻土区季节冻土深度东亚冬季风Seasonal Frozen Soil in East China; Frozen Soil Depth; East Asia Winter Monsoon
摘要: 利用国家气候中心提供的1962~2001年逐月平均土壤温度资料,通过拉格朗日插值方法得到的0℃等温线深度表征冻土深度,研究了全球变暖背景下我国东部冬季季节性冻土的时空演变特征及其与季风活动的可能联系。结果表明,我国东部季节性冻土的深度呈现出北深南浅、西厚东薄的空间分布形势,区域性差异显著。1980年以来,研究区内季节性冻土深度由深变浅,南缘线北缩,冻土退化趋势显著。季节性冻土的变化与东亚冬季风的活动关系密切,强(弱)季风年,冻土南边缘位置偏南(北),其中东部区域冻土南边缘的位置对东亚冬季风的响应最为敏感。
Abstract: Using 1962-2001 monthly soil temperature data provided by National Climate Center, the depth of 0°C iso-therm obtained with Lagrange interpolation method is used to express the frozen soil depth, and the spatial and temporal variations of the frozen soil depth in East China under the background of global warming and its association with winter monsoon activity has been investigated. Results show that the seasonal frozen soil depth in East China exhibits evident regional difference. In general, the seasonal frozen soil depth is deeper in the north part and shallower in the south part, also thicker in the west part than that in east part. Meanwhile, the frozen soil depth becomes shallower with its south edge retreating northward since 1980s, which indicates a significant degrading trend of the seasonal frozen soil. Varia-tions of seasonal frozen soil have close relationship with East Asia winter monsoon. It is revealed that the south edge of the frozen soil depth experiences a southward (northward) movement in the strong (weak) winter monsoon years. In addition, the south edge of the frozen soil depth in the eastern part is more sensitive to the anomalous activity of East Asia winter monsoon.
文章引用:李倩, 陈海山. 全球变暖背景下中国东部季节性冻土的变化特征及其与季风活动的可能联系[J]. 气候变化研究快报, 2013, 2(2): 47-53. http://dx.doi.org/10.12677/CCRL.2013.22008

参考文献

[1] 周幼吾, 郭东信, 程国栋等. 中国冻土[M]. 北京: 科学出版社, 2000.
[2] 李述训, 南卓铜, 赵林. 冻融作用对系统与环境间能量交换的影响[J]. 冰川冻土, 2002, 24(2): 109-115.
[3] 孙颖娜, 付强, 姜宁等. 寒区冻土水文模拟模型研究若干进展[J]. 冰川冻土, 2008, 28(4): 1-4.
[4] 高荣, 韦志刚, 董文杰等. 20世纪后期青藏高原积雪和冻土变化及其与气候变化的关系[J]. 高原气象, 2003, 22(2): 191- 196.
[5] 任国玉, 初子莹, 周雅清等. 中国气温变化研究最新进展[J]. 气候与环境研究, 2005, 10(4): 701-716.
[6] T. E. Oster-kamp. Establishing long-term permafrost observato- ries for ac-tive-layer and permafrost investigations in Alaska: 1977- 2002. Perma-frost and Periglacial Processes, 2003, 14(2): 331- 342.
[7] P. Camill. Permafrost thaw accelerates in boreal peatlands dur- ing late-20th century climate warming. Climatic Change, 2005, 68(1-2): 135-152.
[8] 王绍令. 青藏高原冻土退化的研究[J]. 地球科学进展, 1997, 12(2): 164-167.
[9] 李林, 朱西德, 汪青春等. 青海高原冻土退化的若干事实揭示[J]. 冰川冻土, 2005, 27(3): 320-328.
[10] 金会军, 王绍令, 吕兰芝等. 兴安岭多年冻土退化特征[J]. 地理科学, 2009, 29(2): 223-228.
[11] M. T. Jorgenson, H. R. Charles, C. W. James, et al. Permafrost degradation and ecological changes associated with a warming climate in central Alaska. Climatic Change, 2001, 48(4): 551- 579.
[12] 徐学祖, 王家澄, 张立新. 冻土物理学[M]. 北京: 科学出版社, 2001.
[13] 杨丽中, 朱晓虎, 束正勇等. 基于冻土器改进试验的冻土与气象要素关系研究[J]. 气象水文海洋仪器, 2011, 2: 8-11.
[14] 陈博, 李建平. 近50年来中国季节性冻土与短时冻土的时空变化特征[J]. 大气科学, 2008, 32(3): 432-443.
[15] 施能. 近40年东亚冬季风强度的多时间尺度变化特征及其与气候的关系[J]. 应用气象学报, 1996, 7(2): 175-182.
[16] 施能, 鲁建军, 朱乾根. 东亚冬、夏季风百年强度指数及其气候变化[J]. 南京气象学院学报, 1996, 19(2): 168-177.