[1]
|
刘松涛, 殷福亮. 基于图割的图像分割方法及其新进展[J]. 自动化学报, 2012, 38(6): 911-922.
|
[2]
|
杨建功, 汪西莉. 一种结合图割与双水平集的图像分割方法[J]. 计算机工程与应用, 2012, 48(3): 195-197.
|
[3]
|
D. Greig, B. Porteous and A. Ssheult. Exact maximum a poste- riori estimation for binary images. Journal of the Royal Statisti- cal Society, Series B, 1989, 51(2): 271-279.
|
[4]
|
Y. Bovkov, M. P. Jolly. Interactive organ segmentation using graph cuts. Proceeding of the 3rd International Conference on Medical Image Computing and Computer-Assisted Intervention, Pittsburgh: Springer, 2000: 276-286.
|
[5]
|
T. P. Gurholt, X.-C. Tai. 3D multiphase piecewise constant level set method based on graph cut minimization. Numerical Mathe- matics: Theory, Methods and Applications, 2009, 2: 403-420.
|
[6]
|
E. Bae, J. Shi and X.-C. Tai. Graph cuts for curvature based image denoising. IEEE Transactions on Image Processing, 2009: 1-30.
|
[7]
|
J. C. Picard, H. D. Ratliff. Minimum cuts and related problems. Networks, 1975, 5(4): 357-370.
|
[8]
|
Y. Bovkov, O. Veksler. Graph cuts in vision and graphics: Theo- ries and applications. Handbook of Mathematical Models in Computer Vision, NewYork: Springer, 2006: 79-96.
|
[9]
|
B. V. Cherkassky, A. V. Goldberg. On implementing the pushrelabel method for the maximum flow problem.Algorithmica,1997,19(4):390-410.
|
[10]
|
Goldberg A V,Tarjan R E.A new approach to the maximum-flow problem.Journal of the ACM,1988,35(4):921-940.
|
[11]
|
Ford L,Fulkerson D.Flows in Networks.Princeton:Princeton University Press, 1962.
|
[12]
|
Dinic E A. Algorithm for solution of a problem of maximum flow in networks with power estimation. Soviet Mathematics- Doklady, 1970, 11(5): 1277-1280.
|
[13]
|
Y. Boykov, O. Veksler and R. Zabih. Fast approximate energy minimization via graph cuts. IEEE Transactions on Pattern Ana- lysis and Machine Intelligence, 2001, 23(11): 1222-1239.
|
[14]
|
V. Kolmogorov. What metrics can be approximated by geo-cuts or global optimization of length/area and flux. ICCV, 2005: 564- 571.
|
[15]
|
G. Strang. Maximal flow through a domain. Mathematics Pro- gramming, 1983, 26: 123-143.
|
[16]
|
G. Strang. Maximum flows and minimum cuts in the plane. Advances in Mechanics and Mathematics, 2008, III: 1-11.
|
[17]
|
B. Appleton, H. Talbot. Globally optimal surfaces by continuous maximal flows. Digital Image Computing: Techniques and Applications, 2003: 987-996.
|
[18]
|
B. Appleton, H. Talbot. Globally minimal surfaces by continu- ous maximal flows. IEEE PAMI, 2006: 28.
|
[19]
|
T. Chan, S. Esedoglu and M. Nikolova. Algoritms for finding global minimizers of image segmentation and denoising models. SIAM Journal on Applied Mathematics, 2006, 66(5): 1632-1648.
|
[20]
|
E. Bae, J. Yuan and X.-C. Tai. Convex relaxation for multipartitioning problems using a dual approach. Technical Report CAM 09-75, UCLA, CAM, 2009 September.
|
[21]
|
J. Lellmann, J. Kappes, J. Yuan, F. Becker and C. Schnorr. Con- vex multi-class image labeling by sim-plex-constrained total va- riation. Technical Report, HIC, IWR, University Heidelberg, 2008 November.
|
[22]
|
T. Pock, A. Chambolle, H. Bischof and D. Cremers. A convex relaxation approach for computing minimal partitions. CVPR, Miami, 2009.
|
[23]
|
J. Yuan, E. Bae and X.-C. Tai. A study on continuous max-flow and min-cut approaches. IEEE, 2010: 2217-2224.
|