Study of Liquidity Risk under HJM Framework
摘要: 本文主要研究了在HJM模型框架下对流动性风险的刻画。通过对HJM模型的介绍,把流动性利差作为期限结构直接进行建模,给出流动性利差所满足的动态方程,以此推导出带有流动性风险的债券的价格。同时还通过市场数据,对模型参数、流动性利差和远期利率曲线进行了估计和拟合。
Abstract: This paper studies the liquidity risk under the HJM framework. Through the introduction of the HJM model, we consider liquidity as a term structure and give the liquidity spread dynamic equation directly. Finally, we obtain the dynamic equation of the price of the liquidity-risk bond. Moreover, we estimate and fit the model parameters, liquidity spread and forward rate curve by the market data.
文章引用:李少华, 唐耘. HJM框架下流动性风险的研究[J]. 金融, 2013, 3(2): 7-11. http://dx.doi.org/10.12677/FIN.2013.32002


[1] D. Heath, R. Jarrow and A. Morton. Bond pricing and the term structure of interest rates: A new methodology for contingent claims valuation. Econometrica, 1992, 60(1): 77-105.
[2] T. Nesemann. Positive nonlinear difference equations: Some re- sults and applications. Nonlinear Anal, 2001, 47(7): 4707-4717.
[3] C. Chiarella, O. K. Kwon. Formulation of popular interest rate models under the HJM framework. Working Paper, School of Finance and Economics, 1999: 1-20.
[4] P. J. Schonbucher. The term structure of defaultable bond prices. University of Bonn, Discussion Paper Serie B, 1996, No. 384.
[5] T. R. Bielecki, M. Rutkowski. Modelling of the defaultable term structure: Conditionally Markov approach. IEEE Transactions on Automatic Control, 2004, 49(3): 361-373.
[6] S. Agca. The performance of alternative interest rate risk mea- sures and immunization strategies under a Heath-Jarrow-Morton framework. Virginia Polytechnic Institute and State University, 2002.
[7] R. A. Jarrow, S. M. Turnbull. The intersection of market and cre- dit risk. Journal of Banking and Finance, 2000, 24(1-2): 271- 299.
[8] T. Janosi, R. Jarrow and Y. Yildirim. Estimating expected losses and liquidity discounts implicit debt prices. Journal of Risk, 2002, 5(1): 1-38.