DSC  >> Vol. 2 No. 2 (April 2013)

    Robust Suboptimal Control of a Nonlinear Dynamical System in Microbial Continuous Fermentation

  • 全文下载: PDF(539KB)    PP.44-50   DOI: 10.12677/DSC.2013.22008  
  • 下载量: 2,249  浏览量: 9,202   国家自然科学基金支持



非线性动力系统系统灵敏度鲁棒次优控制微生物发酵Nonlinear Dynamical System; System Sensitivity; Robust Suboptimal Control; Microbial Fermentation



In this paper, taking the microbial continuous fermentation process as background, we discuss a class of optimal control problem of a nonlinear dynamical system with a set of scalar parameters which could have some uncertainty as to their exact values. Two factors are considered: one is maximizing the productivity, the other is minimizing the sensitivity of the productivity with respect to the uncertainty of the parameters. Some important properties of the nonlinear dynamical system and its adjoint system, and the existence of the optimal control are also proved. Numerical algorithm and results are given at the end.

王娟, 冯恩民, 修志龙. 微生物发酵非线性动力系统的鲁棒次优控制[J]. 动力系统与控制, 2013, 2(2): 44-50. http://dx.doi.org/10.12677/DSC.2013.22008


[1] 修志龙. 1,3-丙二醇的微生物法生产分析[J]. 现代化工, 1999, 3: 33-35.
[2] H. Biebl, et al. Microbial production of 1,3-propanediol. Applied Microbiology and Biotechnology, 1999, 52: 289-297.
[3] A. P. Zeng, et al. Multiple product inhibition and growth model- ing of Clostridium butyricum and Kiebsiella pneumoniae in gly- cerol fer-mentation. Biotechnology and Bioengineering, 1994, 44: 902-911.
[4] 修志龙, 曾安平, 安利佳. 甘油生物转化为1,3-丙二醇过程的动力学数学模拟和多稳态研究[J]. 大连理工大学学报, 2000, 44: 428-433.
[5] Y. Q. Sun, et al. Mathematical modeling of glycerol fermentation by Klebsiella pneumoniae: Concerning enzyme-catalytic reductive pathway and transport of glycerol and 1,3-propanediol across cell membrane. Biochemical Engineering Journal, 2008, 38: 22-32.
[6] J. X. Ye, E. M. Feng, L. Wang, Z. L. Xiu and Y. Q. Sun. Model- ing and robustness analysis of biochemical networks of glyc-erol metabolism by Klebsiella pneumoniae. Complex Sciences Lec- ture Notes of the Institute for Computer Sciences, Social Inform- atics and Telecommunications Engineering, Springer, Berlin Heidelberg, 2009, 4: 446-457.
[7] J. Wang, J. X. Ye, E. M. Feng, H. C. Yin and B. Tan. Complex metabolic network of glycerol by Klebsiella pneumo-niae and its system identification via biological robustness. Nonlinear Ana- lysis: Hybrid Systems, 2011, 5(1): 102-112.
[8] J. Wang, J. X. Ye, E. M. Feng, H. C. Yin and Z. L. Xiu. Model- ling and identification of a nonlinear hybrid dynamical system in batch fermentation of glyc-erol. Mathematical and Computer Modelling, 2011, 54(1-2): 618-624.
[9] B. Y. Shen, C. Y. Liu, J. X. Ye, E. M. Feng and Z. L. Xiu. Para- meter identification and optimization algorithm in microbial continu-ous culture. Applied Mathematical Modelling, 2012, 36: 585-595.
[10] J. G. Zhai, J. X. Ye, L. Wang, E. M. Feng, H. C. Yin and Z. L. Xiu. Pathway identification using parallel optimization for a complex metabolic system in microbial continuous culture, Non- linear Analysis: Real World Applications, 2011, 12(5): 2730- 2741.
[11] J. Wang, J. X. Ye, H. C. Yin, E. M. Feng and L. Wang. Sensitiv- ity analysis and identification of kinetic parameters in batch fer- mentation of glycerol. Journal of Computational and Applied Mathematics, 2012, 236(9): 2268-2276.
[12] V. Rehbock, K. L. Teo and L. S. Jennings. A computational pro- cedure for suboptimal robust controls. Dynamics and Control, 1992, 2(4): 331-348.
[13] R. Loxton, K. L. Teo and V. Rehbock. Robust suboptimal control of nonlinear systems. Applied Mathematics and Computation, 2011, 217: 6566-6576.
[14] D. He, H. Ji and T. Zheng. On robustness of suboptimal min- max model predic-tive control. WSEAS Transactions on Systems and Control, 2007, 2: 428-433.
[15] 马知恩, 周义仓. 常微分方程定性与稳定性方法[M]. 北京: 科学出版社, 2009.
[16] J. Kennedy, R. Eberhart. Particle swarm optimization. Proceedings of the IEEE International Conference on Neural Networks, Perth: IEEE, 1995: 1942-1948.