变化环境下水文模拟的几个关键问题和挑战
Hydrological Modeling in a Changing Environment: Issues and Challenges
DOI: 10.12677/JWRR.2013.22013, PDF, HTML,  被引量 下载: 4,627  浏览: 21,498  国家自然科学基金支持
作者: 许崇育*:武汉大学水资源与水电工程科学国家重点实验室,武汉;挪威奥斯陆大学地学系,奥斯陆,挪威;陈 华, 郭生练:武汉大学水资源与水电工程科学国家重点实验室
关键词: 环境变化水文模拟无资料流域非稳定性时空尺度耦合Environment Change; Hydrological Modeling; Ungauged Basins; Non-Stationarity; Spatial and Time Scales Coupling
摘要: 本文讨论了环境变化对水文循环和水文过程的影响,回顾了水文模型发展的历史,取得的成就和存在的问题。重点讨论了环境变化下水文模拟的几个主要问题:1) 水文过程和降雨-径流关系的非稳定性问题;2) 水文模型在无资料流()域的应用问题;3) 水文模型在变尺度(时间和空间)情况下存在的问题;4) 和水文模型与气候模型耦合的可能性问题。在讨论问题的同时提出作者独到的观点和想法。
Abstract: This paper discusses the impact of environment change on hydrological cycle, hydrological proc- esses and hydrological modeling. The paper starts with a review of the history of the hydrological models’ development, the current state and the main challenges. Emphases are then paid to the following issues: the non-stationarity of hydrological processes and the rainfall-runoff relationship, the transferability of hydro- logical models (structure and parameters) across time periods, across spatial regions, across spatial and time scales, and coupling of hydrological models with climate models.
文章引用:许崇育, 陈华, 郭生练. 变化环境下水文模拟的几个关键问题和挑战[J]. 水资源研究, 2013, 2(2): 85-95. http://dx.doi.org/10.12677/JWRR.2013.22013

参考文献

[1] MILLY, P. C. D., BETANCOURT, J., FALKENMARK, M., HIRSCH, R. M., KUNDZEWICZ, Z. W., LETTENMAIER, D. P. and STOUFFER, R. J. Stationarity is dead: Whither water man- agement? Science, 2008, 319(5863): 573-574.
[2] ZHANG, Z. X., CHEN, X., XU, C.-Y., YUAN, L. F., YONG, B. and YAN, S. F. Evaluating the non-stationary relationship be- tween Precipitation and Streamflow in Nine Major Basins of China during the past 50 years. Journal of Hydrology, 2011, 409(1-2): 81-93.
[3] GROISMAN, P. YA., COAUTHORS. Changes in the probability of heavy precipitation: Important indicators of climatic change. Climatic Change, 1999, 42(1): 243-283.
[4] SUPPIAH, R., HENNESSY, K. Trends in seasonal rainfall, heavy rain-days, and number of dry days in Australia 1910-1990. International Journal of Climatology, 1998, 18(10): 1141-1155.
[5] ZHAI, P. M., ESKRIDGE, R. E. Atmospheric water vapor over China. Journal of Climate, 1997, 10: 2643-2652.
[6] WANG, Y. Q., ZHOU, L. Observed trends in extreme precipita- tion events in China during 1961-2001 and the associated changes in large-scale circulation. Geophysical Research Letters, 2005, 32(9): L09707.
[7] GAO, P., GEISSEN, V., RITSEMA, C. J., MU, X.-M. and WANG, F. Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China. Hydrologyand Earth System Science, 2013, 17(3): 961- 972.
[8] ZHANG, Z. X., XU, C.-Y., YING, B., HU, J. J. and SUN, Z. H. Understanding the changing characteristics of droughts in Sudan and the corresponding components of the hydrologic cycle. Jour- nal of Hydrometeorology, 2012, 13(5): 1520-1535.
[9] ZHANG, Z. X., XU, C.-Y., EL-HAJ EL-TAHIR, M., CAO, J. and SINGH, V. P. Spatial and temporal variation of precipitation in Sudan and their possible causes during 1948-2005. Stochastic Environmental Research & Risk Assessment, 2012, 26(3): 429- 441.
[10] ZHANG, Q, LI, J. F., SINGH, V. P., XU, C.-Y. and DENG, J. Y. Influence of ENSO on precipitation in the East River basin, South China. Journal of Geophysical Research, 2013, in press.
[11] BEVEN, K. J., KIRKBY, M. J., SCOELD, N. and TAGG, A. Testing a physically-based flood forecasting model (TOPMO-DEL) for three UK catchments’. Journal of Hydrology, 1984, 69(1-4): 119-143.
[12] REFSGAARD, J. C., HAVNØ, K. and AMMENTORP, H. C. Applications of hydrological models for flood forecasting and flood control in India and Bangladesh. Advances in Water Re- sources, 1988, 11: 101-105.
[13] YAO, C., L. I., Z., BAO, H. and Yu, Z. Application of a devel- oped Grid-Xinanjiang model to Chinese watersheds for flood forecasting purpose. Journal of Hydrology, 2009, 14(9): 923- 934.
[14] XU, C.-Y., SEIBERT, J. and HALLDIN, S. Regional water balance modelling in the NOPEX area: Development and appli- cation of monthly water balance models. Journal of Hydrology, 1996, 180: 211-236.
[15] XU, C.-Y. Application of water balance models to different climatic regions in China for water resources assessment. Water Resources Management, 1997, 11(1): 51-67.
[16] KIZZA, M., RODHE, A., XU, C.-Y. and NTALE, H. K. Model- ling catchment inflows into Lake Victoria: Uncertainties in rain- runoff modelling for Nzoia River. Hydrological Sciences Jour- nal, 2011, 56(7): 1210-1226.
[17] KIZZA, M., GUERRERO, J.-L., RODHE, A., XU, C.-Y. and NTALE, H. K. Modelling catchment inflows into Lake Victoria: Regionalisation of the parameters of a conceptual water balance model. Hydrology Research, 2013, in press.
[18] ARNELL, N. W. A simple water balance model for the simula- tion of streamflow over a large geographic domain. Journal of Hydrology, 1999, 217(3): 314-335.
[19] WIDÉN-NILSSON, E., HALLDIN, S. and XU, C.-Y. Global water-balance modelling with WASMOD-M: Parameter estima- tion and regionalization. Journal of Hydrology, 2007, 340(1-2): 105-118.
[20] WIDÉN-NILSSON, E., GONG, L., HALLDIN, S. and XU, C.-Y. Model performance and parameter behavior for varying time aggregations and evaluation criteria in the WASMOD-M global water balance model. Water Resource Research, 2009, 45(5): W05418.
[21] VÖRÖSMARTY, C. J., FEKETE, B. M., MEYBECK, M. and LAMMERS, R. B. Global system of rivers: Its role in organizing continental land mass and defining land-to-ocean linkages. Glo- bal Biogeochemical Cycles, 2000, 14(2): 599-621.
[22] MULLIGAN, M. WaterWorld: A self-parameterising, physically- based model for application in data-poor but problem-rich envi- ronments globally. Hydrology Research, 2013, in press.
[23] LI, L., NGONGONDO, C. S., XU, C.-Y. and GONG, L. Com- parison of the global TRMM and WFD precipitation datasets in driving a large-scale hydrological model in Southern Africa. Hydrology Research, 2013, in press.
[24] DÖLL, P., KASPAR, F. and LEHNER, B. A global hydrological model for deriving water availability indicators: Model tuning and validation. Journal of Hydrology, 2003, 270(1): 105-134.
[25] PARKIN, G., O’DONNELL, G., EWEN, J., BATHURST, J. C., O’CONNELL, P. E. and LAVABRE, J. Validation of catchment models for predicting land-use and climate change impacts. 2. Case study for a Mediterranean catchment. Journal of Hydrology, 1996, 175(1): 595-613.
[26] BATHURST, J.C., EWEN, J., PARKIN, G., O’CONNELL, P.E. and COOPER, J.D. Validation of catchment models for predict- ing land-use and climate change impacts. 3. Blind validation for internal and outlet responses. Journal of Hydrology, 2004, 287: 74-94.
[27] XU, C.-Y. From GCMs to river flow: A review of downscaling techniques and hydrologic modeling approaches. Progress in Physical Geography, 1999, 23(2): 229-249.
[28] XU, C.-Y. Climate change and hydrologic models: A review of existing gaps and recent research developments. Water Resources Management, 1999, 13(5): 369-382.
[29] XU, C.-Y. Operational testing of a water balance model for predicting climate change impacts. Agricultural and Forest Me- teorology, 1999, 98-99(1-4): 295-304.
[30] XU, C.-Y., WIDÉN, E. and HALLDIN, S. Modelling hydro- logical consequences of climate change—Progress and challenges. Advances in Atmospheric Sciences, 2005, 22(6): 789-797.
[31] GUO, H., HU, Q. and JIANG, T. Annual and seasonal stream- flow responses to climate and land-cover changes in the Poyang Lake basin, China. Journal of Hydrology, 2008, 355(1-4): 106- 122.
[32] JIANG, S., REN, L., YONG, B., Fu, C. B. and YANG, X. L. Analyzing the effects of climate variability and human activities on runoff from the Laohahe basin in northern China. Hydrology Research, 2012, 43(1-2):3-13.
[33] YANG, X., REN, L. L., SINGH, V. P., LIU, X., YUAN, F., JI- ANG, S. and YONG, B. Impacts of land use and land cover changes on evapotranspiration and runoff at Shalamulun River watershed, China. Hydrology Research, 2012, 43(1-2): 23-37.
[34] ZHANG, A., ZHANG, C., FU, G., WANG, B., BAO, Z. and ZHENG, H. Assessments of impacts of climate change and hu- man activities on runoff with SWAT for the Huifa river basin, northeast China. Water Resources Management, 2012, 26(8): 2199-2217.
[35] MCINTYRE, N., LEE, H., WHEATER, H., YOUNG, A. and WAGENER, T. Ensemble predictions of runoff in ungaged catch- ments. Water Resource Research, 2005, 41(12): W12434.
[36] SERVAT, E., DEZETTER, A. Rainfall-runoff modelling and water resources assessment in northwestern Ivory Coast. Tentative ex- tension to ungauged catchments. Journal of Hydrology, 1993, 148(1-4): 231-248.
[37] SEIBERT, J. Regionalisation of parameters for a conceptual rainfall-runoff model. Agricultural and Forest Meteorology, 1999, 98-99: 279-293.
[38] XU, C.-Y. Estimation of parameters of a conceptual water bal- ance model for ungauged catchments. Water Resources Man- agement, 1999, 13(5): 353-368.
[39] XU, C.-Y., SINGH, V. P. Review on regional water resources assessment models under stationary and changing climate. Water Resources Management, 2004, 18(6): 591-612.
[40] MERZ, R., BLOSCHL, G. Regionalisation of catchment model parameters. Journal of Hydrology, 2004, 287(1-4): 95-123.
[41] MURRAY, C. P., BLOSCHL, G. Hydrological modelling in a changing world. Progress in Physical Geography, 2011, 35(2): 249-261.
[42] MULVANEY, T. J. On the use of self-registering rain and flood gauges. Transactions of the Institution of Engineers, Ireland, 1850, 4(2): 1-8.
[43] SHERMAN, L. K. Streamflow from rainfall by the unit-graph method. Engineering News Record, 1932, 108: 501-505.
[44] NASH, J. E., The form of the instantaneous unit hydrograph. IUGG General Assembly, Toronto, IAHS, Gentbrugge, 1958, 3 (45): 114-121.
[45] NASH, J. E. A unit hydrograph study with particular reference to British catchments. Proceedings of the Institution of Civil Engi- neers, 1960.
[46] CRAWFORD, N. H., LINSLEY, R. K. Digital simulation in hydrology. Stanford Watershed Model IV. Stanford, Department of Civil Engineering, University of California, Technical Report No. 39, 1966.
[47] BERGSTRÖM, S. Development and application of a conceptual runoff model for Scandinavian catchments. SMHI Report, Nr. RHO7, 1976.
[48] WMO. Intercomparison of con-ceptual models used in opera- tional hydrological forecasting. Operational Hydrology Report 7, WMO No 429, Geneva, 1975.
[49] ZHAO, R. J. The Xinanjiang model applied in China. Journal of Hydrology, 1992, 135: 371-381.
[50] BOX, G. E. P., JENKINS, G. M., Time series analysis, forecast- ing, and control. San Francisco: Halden-Day, 1970: 543.
[51] ABBOTT, M. B., BATHURST, J. C., CUNGE, J. A., O’CON- NELL, P. E. and RASMUSSEN, J. An introduction to the Euro- pean Hydrological System-Systeme Hydrologique Europeen, “SHE”, 1: History and philosophy of a physically-based distrib- uted modelling system, and 2: Structure of a physically-based distributed modelling system. Journal of Hydrology, 1986, 87: 45-59, 61-77.
[52] ARNOLD, J. G., FOHRER, N. SWAT2000: Current capabilities and research opportunities in applied watershed. Hydrological Processes, 2005, 19(3): 563-572.
[53] BEVEN, K. J., KIRKBY, M. J. A physically based, variable contributing area model of basin hydrology. Hydrological Sci- ences Bulletin, 1979, 24(1): 43-69.
[54] NIJSSEN, B., O’DONNELL, G., HAMLET, A. and LETTEN- MAIER, D. P. Hydrologic sensitivity of global rivers to climate change. Climatic Change, 2001, 50(1-2): 143-175.
[55] HORTON, R. E. The role of infiltration in the hydrologic cycle. Transactions, American. Geophysical Union, 1933, 14(1): 446- 460.
[56] BEVEN, K. J., ROBERT, E. Horton’s perceptual model of infil- tration processes. Hydrological Processes, 2004, 18(17): 3447- 3460.
[57] HEWLETT, J. D., HIBBERT, A. R. Moisture and energy condi- tions within a sloping soil mass during drainage. Journal of Geophysical Research, 1963, 68(4): 1081-1087.
[58] HEWLETT, J. D., HIBBERT, A. R. Factors affecting the re- sponse of small watersheds to precipitation in humid areas. In: SOPPER, W.E., LULL, H.W., Eds., International Symposium on Forest Hydrology, Pennsylvania State University, University Park, Pennsylvania, 1967: 275-290.
[59] DUNNE, T., BLACK, R. D. Partial area contributions to storm runoff in a small New England watershed. Water Resources Re- search, 1970, 6: 1296-311.
[60] GONG, L., WIDÉN-NILSSON, E., HALLDIN, S. and XU, C.-Y. Large-scale runoff routing with an aggregated network-response function. Journal of Hydrology, 2009, 368(1-4): 237-250.
[61] VERBURG, P. H., SOEPBOER, W., VELDKAMP, A., LIMPIADA, R. and ESPALDON, V. Modeling the spatial dynamics of regional land use: The CLUE-S model. Environmental Management, 2002, 30(3): 391-405.
[62] ZHOU, F., XU, Y. P., CHEN, Y., XU, C.-Y., GAO, Y. Q. and DU, J. K. Hydrological response to urbanization at different spa- tio-temporal scales simulated by coupling of CLUE-S and the SWAT model in the Yangtze River Delta region. Journal of Hy- drology, 2013, 485: 113-125.
[63] CHIEW, F. H. S., TENG, J., VAZE, J. and KIRONO, D. G. C. Influence of global climate model selection on runoff impact as- sessment. Journal of Hydrology, 2009, 379(1-2): 172-180.
[64] CHIEW, F. H. S, TENG, J., VAZE, J., POST, D. A., Perraud, J. M., KIRONO, D. G. C., et al. Estimating climate change impact on runoff across southeast Australia: Method, results, and im- plications of the modelling method. Water Resources Research, 2009, 45: W10414.
[65] CHIEW, F. H. S., YOUNG, W. J., CAI, W. and TENG, J. Current drought and future hydroclimate projections in southeast Austra- lia and implications for water resources management. Stochastic Environmental Research and Risk Assessment, 2010, 25(4): 601- 612.
[66] VICUNA, S., DRACUP, J. A., LUND, J. R., DALE, L. L. and MAURER, E. P. Basin-scale water system operations with un- certain future climate conditions: Methodology and case studies. Water Resources Research, 2010, 46: W04505.
[67] PERKINS, S. E., PITMAN A. J. Do weak AR4 models bias projections of future climate changes over Australia? Climatic Change, 2009, 93(3-4): 527-558.
[68] MACADAM, I., PITMAN, A. J. WHETTON, P. H. and ABRAMOWITZ, G. Ranking climate models by performance using actual values and anomalies: Implications for climate change impact assessments. Geophysical Research Letters, 2010, 37(16): L16704.
[69] GRAHAM, L. P., HAGEMANN, S., JAUN, S. and BENISTON, M. On interpreting hydrological change from regional climate models. Climatic Change, 2007, 81(1): 97-122.
[70] DRIESSEN, T. L. A., HURKMANS, R. T. W. L., TERINK, W., HAZENBERG, P., TORFS, P. J. J. F. and UIJLENHOET, R. The hydrological response of the Ourthe catchment to climate change as modelled by the HBV model. Hydrology and Earth System Sciences, 2010, 14(4): 651-665.
[71] BOORMAN, D. B., SEFTON, C. E. Recognizing the uncer- tainty in the quantification of the effects of climate change on hydrological response. Climatic Change, 1997, 35(4): 415-434.
[72] PANAGOULIA, D., DIMOU, G. Linking space-time scale in hydrological modelling with respect to global climate change. Part 1. Models, model properties, and experimental design. Jour- nal of Hydrology, 1997, 194(1): 15-37.
[73] PANAGOULIA, D., DIMOU, G. Linking space-time scale in hydrological modelling with respect to global climate change. Part 2. Hydrological response for alternative climates. Journal of Hydrology, 1997, 194(1-4): 38-63.
[74] JIANG, T., CHEN, Y. D., XU, C.-Y., CHEN, X. H., CHEN, X. and SINGH, V. P. Comparison of hydrological impacts of cli- mate change simulated by six hydrological models in the Dong- jiang Basin, South China. Journal of Hydrology, 2007, 336(3-4): 316-333.
[75] EREGNO, F. E., XU, C.-Y. and KITTEROD, N.-O. Modeling hydrological impacts of climate change in different climatic zones. International Journal of Climate Change Strategies and Management, 2013, in press.
[76] MERZ, R., PARAJKA, J. and BLOÖSCHL, G. Time stability of catchment model parameters: Implications for climate impact analyses. Water Resources Research, 2011, 47(2): W02531.
[77] YOUNG, P. C. Stochastic, dynamic modelling and signal proc- essing: Time variable and state dependent parameter estimation. In: FITZGERALD, W. J., WALDEN, A., SMITH, R. and YOUNG, P. C., Eds., Nonlinear and Nonstationary Signal Processing. Cambridge: Cambridge University Press, 2000: 74-114.
[78] KLEMES, V. Operational testing of hydrological simulation models. Hydrology Science Journal, 1986, 31(1): 13-24.
[79] JARBOE, J. E., HAAN, C. T. Calibrating a water yield model for small ungaged watersheds. Water Resource Research, 1974, 10(2): 256-262.
[80] MAGETTE, W. L., SHANHOLTZ, V. O. and CARR, J. C. Es- timating selected parameters for the Kentucky watershed model from watershed characteristics. Water Resource Research, 1976, 12(3): 472-476.
[81] WEEKS, W. D., ASHKENASY, N. M. Regional parameters for the Sacramento model: A Case Study. Transactions of the In- stitution of Engineers of Australia, 1985, CE27(3): 305-313,
[82] WEEKS, W. D., BOUGHTON, W. C. A simple ARMA hydro- logic model for ungaged catchments in Queensland. Transac- tions of the Institution of Engineers of Australia, 1987, CE29: 85-95.
[83] KARLINGER, M. R., GUERTIN, D. P. and TROUTMAN, B. M. Regression estimates for topological-hydrograph input. Journal of Water Resources Planning and Management, 1988, 114(4): 446-456.
[84] POST, D. A., JAKEMAN, A. J. Relationships between catch- ment attributes and hydrological response characteristics in small Australian mountain ash catchments. Hydrological Proc- esses, 1996, 10(6): 877-892.
[85] MWAKALILA, S. Estimation of stream flows of ungauged catchments for river basin management. Physics and Chemistry of the Earth, 2003, 28(20-27): 935-942.
[86] XU, C.-Y. Testing the transferability of regression equations derived from small sub-catchments to large area in central Swe- den. Hydrology and Earth System Sciences, 2003, 7(3): 317- 324.
[87] BLOSCHL, G. Rainfall-runoff modelling of ungauged catch- ments. In: Encyclopedia of Hydrological Sciences, John Wiley, Chichester, , 2005: 2061-2080.
[88] BEVEN, K. J., FREER, J. Equifinality, data assimilation, and uncertainty estimation in mechanistic modelling of complex en- vironmental systems. Journal of Hydrology, 2001, 249(1-4): 11- 29.
[89] GOTTSCHALK, L. Advances in obser-vational hydrology— Field experiments and modeling. In: TAKEUCHI, K., Ed., Pro- ceedings of Workshop on the Prediction of Ungaged Basins (PUBs), Yamanashi Universuty, Kofu, 2002: 26-34.
[90] KUCZERA, G., MROCZKOWSKI, M. Assessment of hydro- logic parameter uncertainty and the worth of multiresponse data. Water Resource Research, 1988, 34(6): 1481-1489.
[91] VANDEWIELE, G. L., ELIAS, A. Monthly water balance of ungauged catchments obtained by geographical regionalization. Journal of Hydrology, 1995, 170(1-4): 277-291.
[92] PARAJKA, J., MERZ, R. and BLOSCHL, G. A comparison of regionalisation methods for catchment model parameters. Hy- drology and Earth System Sciences, 2005, 9(2): 157-171.
[93] PARAJKA, J., BLOSCHL, G. and MERZ, R. Regional calibra- tion of catchment models: Potential for ungauged catchments. Water Resources Research, 2007, 43(6): W06406.
[94] BARDOSSY, A. Calibration of hydrological model parameters for ungauged catchments. Hydrology and Earth System Sciences, 2007, 11(2): 703-710.
[95] OUDIN, L., ANDRE´ASSIAN, V., PERRIN, C., MICHEL, C. and LE MOINE, N. Spatial proximity, physical similarity, re- gression and ungaged catchments: A comparison of regionaliza- tion approaches based on 913 French catchments. Water Re- sources Research, 2008, 44(3): W03413.
[96] CHIEW, F. H. S., VAZE, J., VINEY, N., JORDAN, P., PER- RAUD, J. M., ZHANG, L., TENG, J., YOUNG, W., ARANCI- BIA, J., MORDEN, R., FREEBAIRN, A., AUSTIN, J., HILL, P., WIESENFELD, C. and MURPHY R. Rainfall-runoff modelling across the Murray-Darling Basin. A Report to the Australian Government from the CSIRO Murray-Darling Basin Sustainable Yields Project. CSIRO, Australia, 2008.
[97] REICHL, J. P. C., WESTERN, A. W., MCINTYRE, N. R. and CHIEW, F.H.S. Optimization of a similarity measure for esti- mating ungauged streamflow. Water Resources Research, 2009, 45(10): W010423.
[98] ZHANG, Y. Q., CHIEW, F. H. S. Evaluation of regionalisation methods for predicting runoff in ungauged catchments in south- east Australia. 18th World IMACS/MODSIM Congress, Cairns, 13-17 July 2009.
[99] JIN, X.-L., XU, C.-Y., ZHANG, Q. and CHEN, Y. D. Regionali- zation study of a conceptual hydrological model in Dongjiang Basin, South China. Quaternary International, 2009, 208(1-2): 129-137.
[100] FERNANDEZ, W., VOGEL, R. M. and SANKARASUBRA- MANIAN, A. Regional calibration of a wa-tershed model. Hy- drological Sciences Journal, 2000, 45(5): 689-707.
[101] VOGEL, R. M. Regional calibration of watershed models. In: SINGH, V. P., FREVERT, D. F., Eds., Watershed Models, Boca Raton: CRC Press, 2006: 549-567.
[102] HUNDECHA, Y., BARDOSSY, A. Modeling of the effect of landuse changes on the runoff generation of a river basin through parameter regionalization of a watershed model. Journal of Hydrology, 2004, 292(1-4): 281-295.
[103] GÖTZINGER, J., BARDOSSY, A. Integration and calibration of a conceptual rainfall-runoff model in the framework of a deci- sion support system for river basin management. Advances in Geosciences, 2005, 5: 31-35.
[104] GÖTZINGER, J., BARDOSSY, A. Comparison of four region- alisation methods for a distributed hydrological model. Journal of Hydrology, 2007, 333(2-4): 374-384
[105] HUNDECHA, Y., OUARDA, T. B. M. J. and BAR-DOSSY, A. Regional estimation of parameters of a rainfallrunoff model at ungauged watersheds using the “spatial” structures of the pa- rameters within a canonical physiographic-climatic space. Water Resources Research, 2008, 44: W01427.
[106] ZHANG, Z., WAGENER, T., REED, P. and BHUSHAN, R. Reducing uncertainty in predictions in ungauged basins by com- bining hydrological indices regionalization and multiobjective optimization. Water Resources Research, 2008, 44: W00B04.
[107] EFSTRATIADIS, A., KOUTSOYIANNIS, D. One decade of multi-objective calibration approaches in hydrological modeling: A review. Hydrological Sciences Journal, 2010, 55(1): 58-78.
[108] VÖRÖSMARTY, C. J., MOORE, B., GRACE, A. L., GILDEA, M. P., MELILLO, J. M., PETERSON, B. J., RASTETTER, E. B. and STEUDLER, P. A. Continental scale models of water bal- ance and fluvial transport: An application to South America. Global Biogeochem, 1989, 3(3): 241-265.
[109] ARNELL, N. W. Effects of IPCC SRES emissions scenarios on river runoff: A global perspective. Hydrology and Earth System Science, 2003, 7(5): 619-641.
[110] WOOD, E. F., LETTENMAIER, D. P. and ZARTA-RIAN, V. G. A land surface hydrology parameterization with subgrid vari- ability for General Circulation Models. Journal of Geophysical Research-Atmospheres, 1992, 97(D3): 2717-2728.
[111] LIANG, X., LETTENMAIER, D. P., WOOD, E. and BURGES, S. J. A simple hydrologically based model of landsurface water and energy fluxes for general circulation models. Journal of Geophysical Research-Atmospheres, 1994, 99(D7): 14415-14428.
[112] FAMIGLIETTI, J. S., WOOD, E. F. Evapotranspiration and runoff from large land areas: Land surface hydrology for at- mospheric general circulation models. Surveys in Geophysics, 1991, 12(1-3): 179-204.
[113] LITTLEWOOD, I. G. Rainfall-streamflow models for ungauged basins: Uncertainty due to modelling time-step. In: PFISTER, L., HOFFMANN, L., Eds., Proceedings of Eleventh Biennial Con- ference of the EuroMediterranean Network of Experimental Ba- sins (ERB), Luxembourg, 20-23 September 2006: 149-155.
[114] LITTLEWOOD, I. G. Characterisation of river flow regimes for environmental and engineering hydrology: Unit hy-drographs for rainfall-streamflowmodelling. Folia Geographica: Series Geo- graphica-Physica, 2008, 39: 5-36.
[115] LITTLEWOOD, I. G., CROKE, B. F. W. Data time-step de- pendency of conceptual rainfall-streamflow model parameters: An empirical study with implications for regionalisation. Hy- drological Sciences Journal, 2008, 53(4): 685-695.