miR-21 与胰腺癌
miR-21 and Pancreatic Cancer
DOI: 10.12677/WJCR.2013.31001, PDF, HTML, XML, 下载: 3,851  浏览: 18,419 
作者: 张莉娜*, 张弘:南通大学附属医院消化内科,南通
关键词: miR-21靶基因胰腺癌miR-21; Target Genes; Pancreatic Cancer
摘要: 微小RNA(microRNA, miRNA)是一类内源性小分子单链RNA,在细胞增殖、分化、凋亡尤其是肿瘤发生发展等生理病理过程中发挥重要作用。miR-21 是研究最早也是较特殊的miRNA 之一,其在几乎所有的实体肿瘤包括胰腺癌中高表达。miR-21 通过作用于靶基因调控胰腺癌发生发发展,在胰腺癌细胞增殖、分化、迁移、侵袭以及肿瘤耐药性等起发面关键作用,有望成为胰腺癌诊断、治疗以及判断预后的潜在的生物标志物,有着潜在的临床应用价值。
Abstract: MicroRNAs (miRNAs) are a class of single-stranded, evolutionary conserved, noncoding RNA molecules,which play important roles in various physiological or pathological processes, such as cell proliferation, differentiation,apoptosis, and especially tumorigenesis. All of them, miR-21 is one of the first studied and most special miRNAs as it is over expressed in nearly all of soil tumors. miR-21 has been shown to regulate the progression of pancreatic caner by targeting tumor suppressor or oncogenes, playing a key role in cell proliferation, differentiation, migration, invasion and drug resistance of pancreatic cancer. Therefore, miR-21 will possibly be a potential biomarker for diagnosis, therapy and prognosis of pancreatic cancer, showing potentially clinical value.

 

文章引用:张莉娜, 张弘. miR-21 与胰腺癌[J]. 世界肿瘤研究, 2013, 3(1): 1-7. http://dx.doi.org/10.12677/WJCR.2013.31001

参考文献

[1] R. C. Lee, R. L. Feinbaum and V. Ambros. The C. elegans het- erochronic gene lin-4 encodes small RNAs with antisense com- plementarity to lin-14. Cell, 1993, 75: 843-854.
[2] G. A. Calin, C. D. Dumitru, M. Shimizu, et al. Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proceedings of the Na- tional Academy of Sciences of the USA, 2002, 99: 15524-15529.
[3] Z. Liu, A. Sall and D. Yang. MicroRNA: An emerging therapeu- tic target and intervention tool. International Journal of Molecu- lar Sciences, 2008, 9: 978-999.
[4] X. Fu, Y. Han, Y. Wu, et al. Prognostic role of microRNA-21 in various carcinomas: A systematic review and meta-analysis. Euro- pean Journal of Clinical Investigation, 2011, 41(11): 1245-1253.
[5] S. Volinia, G. A. Calin, C. G. Liu, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proceedings of the National Academy of Sciences of the USA, 2006, 103: 2257-2261.
[6] Y. Tomimaru, H. Eguchi, H. Nagano, et al. Circulating micro- RNA-21 as a novel biomarker for hepatocellular carcinoma. Jour- nal of Hepatology, 2012, 56(1): 167-175.
[7] K. E. Resnick, H. Alder, J. P. Hagan, et al. The detection of dif- ferentioally expressed microRNAs from the serum of ovarian cancer patients using a novel real-time PCR platform. Gyneco- logic Oncology, 2009, 112(1): 55-59.
[8] S. Komatsu, D. Ichikawa, H. Takeshita, et al. Circulating mi- croRNAs in plasma of patients with oesophageal squmaous cell carcinoma. British Journal of Cancer, 2011, 105(1): 104-111.
[9] H. Wang, W. Peng, X. Ouyang, et al. Circulating microRNAs as candidate biomarkers in patients with systemic lupus erythema- tosus. Translational Research, 2012, 160(3): 198-206.
[10] T. Thum, C. Gross, J. Fiedler, et al. MicroRNA-21 contributes to myocardial disease by stimulating MAP kinase signalling in fi- broblasts. Nature, 2008, 456(7224): 980-984.
[11] C. S. Neal, M. Z. Michael, L. K. Pimlott, et al. Circulating mi- croRNA expression is reduced in chronic kidney disease. Ne- phrology Dialysis Transplantation, 2011, 26(11): 3794-3802.
[12] I. G. Papaconstantinou, A. Manta, M. Gazouli, et al. Expression of MicroRNAs in patients with pancreatic cancer and its prog- nostic significance. Pancreas, 2013, 42(1): 67-71.
[13] C.-K. Yu, S.-N. Yu, Z.-H. Lu, et al. Research advances in mi- croRNA in pancreatic ductal adenocarcinoma. Acta Academiae Medicinae Sinicae, 2011, 33(5): 575-581.
[14] X. Cai, C. H. Hagedorn and B. R. Cullen. Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA, 2004, 10(12): 1957-1966.
[15] B. Qian, D. Katsaros, L. Lu, M. Preti, A. Durando, R. Arisio, L. Mu and H. Yu. High miR-21 expression in breast cancer associ- ated with poor disease-free survival in early stage disease and high TGF-β1. Breast Cancer Research and Treatment, 2009, 117 (1): 131-140.
[16] S. Fujita, T. Ito, T. Mizutani, S. Minoguchi, N. Yamamichi, K. Sakurai and H. Iba. MiR-21 gene expression triggered by AP-1 is sustained through a double-negative feedback mechanism. Journal of Molecular Biology, 2008, 378: 492-504.
[17] S. D. Selcuklu, M. T. Donoghue and C. Spillane. MiR-21 as a key regulator of oncogenic processes. Biochemical Society Trans- actions, 2009, 37: 918-925.
[18] M. Krausch, A. Raffel, M. Anlauf, et al. Loss of PTEN expres- sion in neuroendocrine pancreatic tumors. Hormone and Meta- bolic Research, 2011, 43: 865-871.
[19] A. Sakurada, A. Suzuki, M. Sato, H. Yamakawa, et al. Infrequent genetic alterations of the PTEN/MMAC1 gene in Japanese pa- tients with primary cancers of the breast, lung, pancreas, kidney, and ovary. Japanese Journal of Cancer Research, 1997, 88: 1025- 1028.
[20] M. Escriva, S. Peiro, N. Herranz, et al. Repression of PTEN phosphatase by snail1 transcriptional factor during gamma ra- diation-induced apoptosis. Molecular and Cellular Biology, 2008, 28: 1528-1540.
[21] M. Krausch, A. Raff el, M. Anlauf, et al. Loss of PTEN expres- sion in neuroendocrine pancreatic tumors. Hormone and Meta- bolic Research, 2011, 43: 865-871.
[22] X. Xu, B. Ehdaie, N. Ohara, et al. Synergistic action of Smad4 and PTEN in suppressing pancreatic ductal adenocarcinoma for- mation in mice. Oncogene, 2010, 29: 674-686.
[23] B. Lankat-Buttgereit, R. Goke. The tumour suppressor Pdcd4: Recent advances in the elucidation of function and regulation. Biology of the Cell, 2009, 101: 309-317.
[24] R. Nieves-Alicea, N. H. Colburn, A. M. Simeone, et al. Pro- grammed cell death 4 inhibits breast cancer cell invasion by in- creasing tissue inhibitor of metalloproteinases-2 expression. Breast Cancer Research and Treatment, 2009, 114: 203-209.
[25] Z. T. Wei, X. Zhang, X. Y. Wang, et al. PDCD4 inhibits the ma- lignnant phenotype of ovarian cancer cells. Cancer Science, 2009, 100: 1408-1413.
[26] I. Bhatti, A. Lee, V. James, et al. Knockdown of microRNA-21 inhibits proliferation and increases cell death by targeting pro- grammed cell death 4 (PDCD4) in pancreatic ductal adenocar- cinoma. Journal of Gastrointestinal Surgery, 2011, 15: 199-208.
[27] L. Blavier, P. Henriet, S. Imren, et al. Tissue inhibitors of matrix metalloproteinases in cancer. Annals of the New York Academy of Sciences, 1999, 878: 108-119.
[28] M. Ahonen, M. Poukkula, A. H. Baker, et al. Tissue inhibitor of metalloproteinases-3 induces apoptosis in melanoma cells by stabilization of death receptors. Oncogene, 2003, 22: 2121-2134.
[29] V. Fendrich, E. P. Slater, E. Heinmoller, et al. Alterations of the tissue inhibitor of metalloproteinase-3 (TIMP3) gene in pancre- atic adenocarcinomas. Pancreas, 2005, 30: e40-e45.
[30] Y. Nagao, M. Hisaoka, A. Matsuyama, et al. Association of mi- croRNA-21 expression with its targets, PDCD4 and TIMP3, in pancreatic ductal adenocarcinoma. Modern Pathology, 2012, 25 (1):112-121.
[31] R. J. Youle, A. Strasser. The BCL-2 protein family opposing activities that mediate cell death. Nature Reviews Molecular Cell Biology, 2008, 9: 47-59.
[32] D. Chen, X. F. Zheng, D. L. Kang, et al. Apoptosis and expres- sion of the Bcl-2 family of proteins and P53 in human pancreatic ductal adenocarcinoma. Medical Principles and Practice, 2012, 21: 68-73.
[33] F. Meng, R. Henson, H. Wehbe-Janek, et al. MicroRNA-21 re- gulates expression of the PTEN tumor suppressor gene in human hepatocellularcancer. Gastroenterology, 2007, 133: 647-658.
[34] X. Zhou, Y. Ren, L. Moore, et al. Downregulation of miR-21 in- hibits EGFR pathway and suppresses the growth of human glio- blastoma cells independent of PTEN status. Laboratory Investi- gation, 2010, 90(2): 144-155.
[35] J. Dong, Y. P. Zhao, L. Zhou, et al. Bcl-2 upregulation induced by miR-21 via a direct interaction is associated with apoptosis and chemoresistance in MIA PaCa-2 pancreatic cancer cells. Archives of Medical Research, 2011, 42: 8-14.
[36] N. S. Wickramasinghe, T. T. Manavalan, S. M. Dougherty, et al. Estradiol downregulates miR-21 expression and increases miR- 21 target gene expression in MCF-7 breast cancer cells. Nucleic Acids Research, 2009, 37: 2584-2595.
[37] X. Zhou, Y. Ren, L. Moore, et al. Downregulation of miR-21 inhibits EGFR pathway and suppresses the growth of human glioblastoma cells independent of PTEN status. Laboratory In- vestigation, 2010, 90: 144-155.
[38] J. A. Chan, A. M. Krichevsky and K. S. Kosik. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Research, 2005, 65: 6029-6033.
[39] X. Kong, Y. Du, G. Wang, et al. Detection of differentially ex- pressed microRNAs in serum of pancreatic ductal adenocarci- noma patients: MiR-196a could be a potential marker for poor prognosis. Digestive Diseases and Sciences, 2010, 56(2): 602- 609.
[40] F. Tavano, F. F. di Mola, A. Piepoli, et al. Changes in miR-143 and miR-21 expression and clinic opathologicalcorrelations in pancreatic cancers. Pancreas, 2012, 41(8): 1280-1284.
[41] R. Liu, X. Chen, Y. Q. Du, et al. Serum MicroRNA expression profile as a biomarker in the diagnosis and prognosis of pancre- atic cancer. Clinical Chemistry, 2012, 58: 3610-3618.
[42] S. Ali, A. Ahmad, S. Banerjee, et al. Gemcitabine sensitivity can be induced in pancreatic cancer cells through modulation of miR-200 and miR-21 expression by curcumin or its analogue CDF. Cancer Research, 2010, 70: 3606-3617.
[43] J. K. Park, E. J. Lee, C. Esau, et al. Antisense inhibition of mi- croRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcino- ma. Pancreas, 2009, 38(7): e190-e199.
[44] J. H. Hwang, J. Voortman, E. Giovannetti, et al. Identification of mi-croRNA-21 as a biomarker for chemoresistance and clinical outcome following adjuvant therapy in resectable pancreatic cancer. PLoS One, 2010, 5(5): e10630.
[45] E. Giovannetti, N. Funel, G. J. Peters, et al. MicroRNA-21 in pancreatic cancer: correlation with clinical outcome and phar- macologic aspects underlying its role in the modulation of gem- citabine activity. Cancer Research, 2010, 70(11): 4528-4538.
[46] M. Dillhoff, J. Liu, Frankel W., et al. MicroRNA-21 is overex- pressed in pancreatic cancer and a potential predictor of survival. Journal of Gastrointestinal Surgery, 2008, 12(12): 2171-2176.
[47] I. G. Papaconstantinou, A. Manta, M. Gazouli, et al. Expression of microRNAs in patients with pancreatic cancer and its prog- nostic significance. Pancreas, 2013, 42(1): 67-71.
[48] A. Grimson, K. K. Farh, W. K. Johnston, et al. MicroRNA tar- geting specificity in mammals: Determinants beyond seed pair- ing. Molecular Cell, 2007, 27: 91-105.
[49] A. M. Krichevsky, G. Gabriely. MiR-21: A small multi-faceted RNA. Journal of Cellular and Molecular Medicine, 2009, 13(1): 39-53.