EF-Hand蛋白研究进展
Progress on the EF-Hand Proteins
DOI: 10.12677/biphy.2013.11001, PDF, HTML, XML,  被引量 下载: 4,771  浏览: 37,921  国家自然科学基金支持
作者: 吁 亭, 赵宇威, 余绍宁*:上海复旦大学化学系,上海
关键词: EF-Hand蛋白EF-Hand结构域钙离子EF-Hand Protein; EF-Hand Motif; Calcium
摘要: EF-hand蛋白作为钙离子结合蛋白家族中的特殊成员和钙离子一起参与了从细胞增殖到细胞凋亡各方面的功能调节,EF-hand蛋白调节信号的异常也被认为是人类多种疾病的诱因。按照功能分类,EF-hand蛋白可以分为具有调控功能的Ca2+信号蛋白和只参与Ca2+转运、缓冲的Ca2+缓冲蛋白两大类。EF-hand蛋白功能的多样性与EF-hand结构的构象、组织形式、对钙离子的响应程度等密切相关。本文就EF-hand蛋白结构与功能的差异以及与疾病的关系进行简要综述。
Abstract: Structural the EF-hand Ca2+-binding proteins and calcium have been recognized as the key players in all aspects of cell function, starting with a cell’s birth during mitosis and ending with its apoptotic death. A malfunction in EF-hand proteins-signaling can engender many human diseases. Functionally, EF-hand proteins can be divided into two general classes: the Ca2+ sensors and the Ca2+ buffers. The exceptional versatility of the EF-hand proteins is intimately associated with the diversity of the EF-hand motifs, such as discrepancy in conformations, domain organization, structural responses to calcium and so on. In the present review, we describe the progress on the structure and function of EF-hand proteins, as well as many human diseases caused by signaling dysfunction.
文章引用:吁亭, 赵宇威, 余绍宁. EF-Hand蛋白研究进展[J]. 生物物理学, 2013, 1(1): 1-10. http://dx.doi.org/10.12677/biphy.2013.11001

参考文献

[1] L. Downey, R. Livingston and A. Stopeck. Diagnosing and treating breast cancer in elderly women: A call for improved un- der standing. Journal of the American Geriatrics Society, 2007, 55(10): 1636-1644.
[2] 上海市疾病预防控制中心. 2002年上海市市区恶性肿瘤发病率[J]. 肿瘤, 2006, 26(5): 496.
[3] S. E. Jones, J. Cantrell, S. Vukelja, et al. Comparison of meno- pausal symptoms during the first year of adjuvant therapy with either exemestane or tamoxifen in early breast cancer: Report of a Tamoxifen Exemestane Adjuvant Multicenter trial substudy. Journal of Clinical Oncology, 2007, 25(30): 4765-4771.
[4] B. Thurlimann, A. Keshaviah, H. T. Mouridsen, et al. BIG 1-98: Randomized double-blind phase III study to evaluate letrozole (L) vs. tamoxifen (T) as adjuvant endocrine therapy for post- menopausal women with receptor-positive breast cancer. Journal of Clinical Oncology, 2005, 23: 6S.
[5] 沈镇宙, 殷文瑾, 陆劲松. 老年乳腺癌的外科治疗[J]. 中国医学论坛报, 2007, 12: 13.
[6] 张毅, 姜军, 杨新华等. 老年乳腺癌ER、PR表达及其与临床病理的关系[J]. 第三军医大学学报, 2007, 29(5): 454-456.
[7] 徐宏, 张斌, 张强等. Ⅰ、Ⅱ期乳腺癌单纯乳房切除并腋淋巴结清扫与根治术疗效比较(附192例随机对照研究)[J]. 中国实用外科杂志, 2003, 23(10): 614-616.
[8] 张保宁, 张惠明. 老年人乳腺癌治疗的研究现状与展望[J]. 中华肿瘤杂志, 2008, 30(3): 161-164.
[9] U. Guller, S. Safford and R. Pietrobon. High hospital volume is associated with betteRoutcomes foRbreast cancer surgery: Ana- lysis of 233,247 patients. World Journal of Surgery, 2005, 29(8): 994-999.
[10] M. Blichert-Toft, M. Nielsen, M. During, et al. Long-term results of breast conserving surgery vs. mastectomy for early stage inva- sive breast cancer: 20-year follow-up of the Danish randomized DBCG-82TM protocol. Acta Oncologica, 2008, 47(4): 672- 681.
[11] 贾志龙, 丛义滋, 郑磊等. 保留乳房手术治疗老年乳腺癌112例[J]. 中国肿瘤临床, 2009, 36(19): 1090-1093.
[12] 杨永久. 乳腺癌术后皮下积液的防治[J]. 中国普通外科杂志, 2005, 14(4): 312-313.
[13] 周武元, 田兴松. 乳腺癌术后皮瓣坏死原因分析及预防[J]. 山东医药, 2003, 43(12): 9-11.
[14] S. Vignes, M. Arrault and M. Ebelin. Poor influence of surgery on upper limb lymphedema volume in patients after breast can- cer treatment. Journal des Maladies Vasculaires, 2006, 31(4): 202-205.
[15] G. H. Sakorafas, G. Peros, L. Cataliotti, et a1. Lymphoedema following axillary lymph node dissection for breast cancer. Sur- gical Oncology, 2006, 15(3): 153-165.
[16] 1] Kretsinger RH,Nockolds CE.Carp muscle calcium-binding protein II. Structure determination and general description. Journal of Biological Chemistry, 1973,248(9):3313-3326.
[17] [2] Lander ES,Linton LM,Birren B,Nusbaum C,etal.Initial sequencing and analysis of the human genome. Nature, 2001,409(6822):860-921.
[18] [3] Carafoli E,Santella L,Branca D,etal.Generation control and proces-
[19] sing of cellular calcium signals. Critical Reviews in Biochemistry and Molecular Biology, 2001,36(2):107-260.
[20] [4] chwaller B.The continuing disappearance of “pure” Ca2+ buffers. Cellular and Molecular Life Sciences ,2009.66(2):275-300.
[21] [5] Silva AC,Reinach FC.Calcium binding induces conformational changes in muscle regulatory proteins. Trends in Biochemical Sciences, 1991,16(2):53-57.
[22] [6] Baumgartel K,Mansuy IM.Neural functions of calcineurin in synaptic plasticity and memory. Learning and Memory, 2012,19(9):375
[23] -384.
[24] [7] Yanez M,Gil-Longo J,Campos-Toimil M.Calcium binding proteins.Advances in Experimental Medicine and Biology, 2012,740:4
[25] 61-482.
[26] [8] Gifford JL, Walsh MP, Vogel HJ. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochemical Journal, 2007,405(2):199-221.
[27] [9] da Silva AC, Kendrick-Jones J, Reinach FC. Determinants of Ion Specificity on EF-hands Sites:Conversion of the Ca2+/Mg2+ site of smooth muscle myosin regulatory light chain into a Ca(2+)-specific site. Journal of Biological Chemistry, 1995,270(12):6773-6778.
[28] [10] Grabarek Z. Structural Basis for Diversity of the EF-hand Calcium-binding Proteins. Journal of Molecular Biology, 2006,395(3)
[29] :509-525.
[30] [11] Strynadka NC, James MN. Crystal structures of the helix-loop-h
[31] lelix calcium-binding proteins. Annual Review of Biochemistry, 1989,
[32] 58:951-998.
[33] [12] Vijay-Kumar S,Cook WJ. Structure of a sarcoplasmic calcium-bi
[34] nding protein from Nereis diversicolor refined at 2.0 A resolution. Journal of Molecular Biology,1992,224(2):413-426.
[35] [13] Cook WJ,Jeffrey LC,Cox JA,et al. Structure of a sarcoplasmic calcium-binding protein from amphioxus refined at 2.4 A resolution.Jo-
[36] urnal of Molecular Biology,1993,229(2):461-471.
[37] [14] Reid RE. Synthetic fragments of calmodulin calcium-binding site III. A test of the acid pair hypothesis. Journal of Molecular Biology,1990,265(11):5971-5976.
[38] [15] Shaw GS,Hodges RS, Sykes BD. Calcium-induced peptide association to form an intact protein domain: 1H NMR structural evidence. Science,1990,249(4966):280-283.
[39] [16] Linse S,Thulin E, Sellers P. Disulfide bonds in homo- and heter-
[40] odimers of EF-hand subdomains of calbindin D9k: stability,calcium binding, and NMR studies. Protein Science,1993,2(6):985-1000.
[41] [17] Durussel I,Luan-Rilliet Y,Petrova T,etal.Cation binding and conformation of tryptic fragments of Nereis sarcoplasmic calcium-bin-
[42] ding protein:calcium-induced homo-and heterodimerization. Biochemi-
[43] stry,1993,32(9):2394-2400.
[44] [18] RE Reid,J Gariepy,AK Saund, RS Hodges.Calcium-induced protein folding. Structure-affinity relationships in synthetic analogs of the helix-loop-helix calcium binding unit. Journal of Biological Chemistry,1981,256(6):2742-2751.
[45] [19] Lopez MM,Chin DH, Baldwin RL, etal. The enthalpy of the alanine peptide helix measured by isothermal titration calorimetry using metal-binding to induce helix formation. Proceedings of the National Academy of Sciences, 2002,99(3):1298-1302.
[46] [20] Babu YS,Sack JS,Greenhough TJ,etal.Three-dimensional struct-
[47] ure of calmodulin. Nature, 1985,315(6014):37-40.
[48] [21] Herzberg O,James MN.Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 A resolution. Journal of Molecular Biology,1988,203(3):761-779.
[49] [22] Ames JB,Hendricks KB,Strahl T,etal. Structure and calcium-bind-
[50] ing properties of Frq1, a novel calcium sensor in the yeast Saccharomyces cerevisiae. Biochemistry, 2000,39(40):12149-12161.
[51] [23] Rabah G,Popescu R,Cox JA,etal. Solution structure and internal dynamics of NSCP,a compact calcium-binding protein. FEBS Journal,
[52] 2005,272(8):2022-2036.
[53] [24] Kojetin DJ,Venters RA,Kordys DR, etal. Structure,binding interface and hydrophobic transitions of Ca2+-loaded calbindin-D(28K). Nature Structural & Molecular Biology,2006,13(7):641-647.
[54] [25] Brunet S,Scheuer T,Klevit R,et al. Modulation of CaV1.2 channels by Mg2+ acting at an EF-hand motif in the COOH-terminal domain. The Journal of General Physiology,2005,126(4):311-323.
[55] [26] Babini E,Bertini I,Capozzi F,et al. Principal component analysis of the conformational freedom within the EF-hand superfamily. Journal of Proteome Research,2005,4(6):1961-1971.
[56] [27] Cox JA, Durussel I, Scott DJ, et al. Remodeling of the AB site of rat parvalbumin and oncomodulin into a canonical EF-hand. European Journal of Biochemistry,1999,264(3):790-799.
[57] [28] Herzberg O,James MN. Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature, 1985,313(6004)
[58] :653-659.
[59] [29] Herzberg O,Moult J,James MN. A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. Journal of Biological Chemistry,1986,261(6):2638-2644.
[60] [30] Chin D, Means, AR. Calmodulin: a prototypical calcium sensor.Trends in Cell Biology,2000,10:322-328
[61] [31] Kuboniwa H,Tjandra N,Grzesiek S,etal. Solution structure of calcium-free calmodulin. Nature. Nature Structural & Molecular Biology,1995,2:768-776.
[62] [32] Zhang M,Tanaka T,Ikura M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nature Structural & Molecular Biology,1995,2(9):758-767.
[63] [33] Al-Shanti N,Stewart CE. Ca2+/calmodulin-dependent transcriptio-
[64] nal pathways: potential ediators of skeletal muscle growth and development. Biological reviews of the Cambridge Philosophical Society,2009,84(4):637-652.
[65] [34] Swindells MB,Ikura M. Pre-formation of the semi-open conformation by the apo-calmodulin C-terminal domain and implications for binding IQ-motifs. Nature Structural & Molecular Biology,1996,3(6):501-504.
[66] [35] Sorensen BR,Faga LA,Hultman R, et al. An interdomain linker increases the thermostability and decreases the calcium affinity of the calmodulin N-domain. Biochemistry,2002,41(1):15-20.
[67] [36] Anthis NJ,Doucleff M,Clore GM.Transient, sparsely populated compact states of apo and alcium-loaded calmodulin probed by paramagnetic relaxation enhancement:interplay of conformational selection and induced fit. J Am Chem Soc, 2011,133(46):18966-18974.
[68] [37] Otterbein LR,Kordowska J,Witte-Hoffmann C,etal.Crystal structures of S100A6 in the Ca(2+)-free and Ca(2+)-bound states: the calcium sensor mechanism of S100 proteins revealed at atomic resolution. Structure,2002,10(4):557-567.
[69] [38] Drohat AC,Tjandra N, Baldisseri DM, etal. The use of dipolar couplings for determining the solution structure of rat apo-S100B(beta-
[70] beta). Protein Science,1999,8(4):800-809.
[71] [39] Yap KL, Ames JB, Swindells MB, etal. Diversity of conformation-
[72] al states and changes within the EF-hand protein superfamily. Proteins,1999,37(3):499-507.
[73] [40] Colotti G, Zamparelli C,Verzili D,etal. The W105G and W99G sorcin mutants demonstrate the role of the D helix in the Ca2+-depende-
[74] nt interaction with annexin VII and the cardiac ryanodine receptor. Biochemistry, 2006,45(41):12519-12529.
[75] [41] Watanabe M,Konishi M. Intracellular calibration of the fluoresce-
[76] nt Mg2+ indicator furaptra in rat ventricular myocytes. Pflugers Arch,2001,442(1):35-40.
[77] [42] Schmidt H,Arendt O, Brown EB,etal. Parvalbumin is freely mobile in axons, somata and nuclei of cerebellar Purkinje neurones. Journal of Neurochemistry,2007,100(3):727-735.
[78] [43] Babini E,Bertini I,Capozzi F, etal. Solution structure of human beta-parvalbumin and structural comparison with its paralog alpha-par-
[79] valbumin and with their rat orthologs. Biochemistry,2004,43(51):1607
[80] 6-16085.
[81] [44] Henzl MT,Tanner JJ. Solution structure of Ca2+-free rat beta-parvalbumin (oncomodulin). Protein Science, 2007,16(9):1914-19
[82] 26.
[83] [45] Cedervall T,Andre I,Selah C, et al. Calbindin D28k EF-hand ligand binding and oligomerization: four high-affinity sites--three modes of action. Biochemistry,2005,44(41):13522-13532.
[84] [46] Berggard T,Miron S,Onnerfjord P, et al. Calbindin D28k exhibits properties characteristic of a Ca2+ sensor. Journal of Biological Chemistry,2002,277(19):16662-16672.
[85] [47] Berggard T,Silow M,Thulin E, et al. Ca(2+)-and H(+)-dependent conformational changes of calbindinD(28k). Biocheistry, 2000,39(23):68
[86] 64-6873.
[87] [48] Berridge MJ,Bootman BD, Lipp P.Calcium—a life and death signal.Nature,1998,395:645–648.
[88] [49] Berridge MJ,Lipp P,Bootman MD. The versatility and universality of calcium signalling. Nature reviews molecular cell biology,2000,1:11
[89] -21.
[90] [50] Andersson M,Malmendal MA,Linse S,etal.Structural basis for the negative allostery between Ca2+-and Mg2+-binding in the intracellular Ca2+-receptor calbindinD9k.Protein Science,1997,6:1139-1147.
[91] [51] Shannon RD.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A,1976,32:751-767.
[92] [52]Tanokura M,Yamada K.Calorimetric study of Ca-and Mg-binding by calmodulin.The Journal of Biochemistry (Tokyo),1983,94:607-609.
[93] [53] Grabarek Z. Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins.Biochimica et Biophysica Acta,2011,1813:913-921.
[94] [54] Black DJ, Leonard J, Persechini A. Biphasic Ca -dependent switching in a calmodulin-IQ domain complex, Biochemistry,2006,45:
[95] 6987-6995.
[96] [55] Moroz OV,Antson AA,Grist SJ,etal.Structure of the human S100A12–copper complex: implications for host parasite defence,Acta Crystallographica Section D,2003,59:859-867.
[97] [56] Moroz OV,Blagova EV,Wilkinson AJ,etal.The crystal structures of human S100A12 in apo form and in complex with zinc: new insights into S100A12 oligomerisation. Journal of Molecular Biology,2009,391
[98] :536-551.
[99] [57] Botelho HM,Koch M,Fritz G,etal.Metal ions modulate the folding and stability of the tumor suppressor protein S100A2. FEBS Journal,2009,276,1776-1786.
[100] [58] Schaub MC,Heizmann CW.Calcium, troponin, calmodulin, S100 proteins: from myocardial basics to new therapeutic strategies.Bioche-
[101] mical and Biophysical Research Communications 2008,369:247-264
[102] [59] Leukert N,Vogl T,Strupat K,etal.Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity, J. Mol. Biol,2006,359:961-972.
[103] [60] Ostendorp T,Leclerc E,Galichet A,etal. Structural and functional insights into RAGE activation by multimeric S100B, EMBO Journal,2007,26:3868-3878.
[104] [61] Nishikawa T,Lee IS,Shiraishi N, etal.Identification of S100B proteinas copper-binding protein and its suppression of copper-induced cell damage.Journal of Biological Chemistry,1997,272:23037-23041.
[105] [62] Chao SH, Bu CH, Cheung WY.Activation of troponin C by Cd2+ and Pb2+. Arch Toxicol 1990,64:490-496.
[106] [63] Aramini JM,Hiraoki T,Grace MR,Swaddle TW,etal.NMR and stopped-flow studies of metal ion binding to alpha-lactalbumins.Bioch-
[107] im Biophys Acta,1996,1293:72-82.
[108] [64] Kumar et al. BMC Biophysics,2012,5:15 http://www.biomedcent-
[109] ral.com/2046-1682/5/15.
[110] [65] Klee CB,Means AR. Keeping up with calcium: conference on calcium-binding proteins and calcium function in health and disease. EMBO Reports, 2002 Sep;3(9):823-827.
[111] [66] Zhu Y.Roles of Calcium Binding Protein in Neural System Diseases. Chinese Journal of Biochemis try and Molecular Biology, 2008,24( 5):413-418.
[112] [67] Marenholz I,Lovering RC,Heizmann CW,An up date of the S100 nomenclature, Biochimica et Biophysica Acta,2006,1763:1282-1283.
[113] [68] Heizmann CW,Ackermann GE,Galichet A. Pathologies involving the S100 proteins and RAGE, Subcellular Biochemistry,2007,45:93-13
[114] 8.
[115] [69] Skelton NJ,Kordel, Akke M,etal.Signal transduction versus buffering activity in Ca 2+-binding proteins,Nature Structural Biology,1
[116] 994,1:239-245.
[117] [70] Donato R.Intracellular and extracellular roles of S100 proteins. Microscopy Research and Technique, 2003,60(6):540-551.
[118] [71] Nacken W,Kerkhoff C.The hetero-oligomeric complex of the S100A8/S100A9 protein is extremely protease resistant. FEBS Letter,2007,581:5127-5130.
[119] [72] Gebhardt C,Nemeth J,Angel P.S100A8 and S100A9 in inflamma-
[120] tion and cancer. Biochemical Pharmacology,2006,72:1622-1631.
[121] [73] Corbin BD,Seeley EH,Raab A, etal.Celation and inhibition of bacterial growth in tissue abscesses. Science ,2008,319:962-965.
[122] [74] Yanamandra K, Alexeyev O, Zamotin V, Srivastava V, etal. Amyloid frmation by the po-Inflammatory S100A8/A9 poteins in the aeing postate. PLoS ONE,2009,4:e5562.
[123] [75] Handley MT, Lian LY,Haynes LP,& Bur-goyne RD: 2010. Structural and functional deficits in a neuronal calcium sensor-1 mutant identifiedi nacase of autisticspectrum disorder.PLoS ONE,5:e10534.
[124] [76] Boehmerle W, Zhang K, Sivula M, etal.Chronic exposure to paclitaxel diminishes phosphoinositide signaling by calpain-mediated neuronal calcium sensor-1 degrada-tion. Proceedings of the National Academy of Sciences,2007, 104:11103-11108.
[125] [77] Zhang K, Heidrich FM, DeGray B, etal. Paclitaxel accelerates spontaneous calcium oscillations in cardiomyocytes by interact- ing with NCS-1 and the InsP3R. Journal of Molecular Cell Biology Cardiol ,2010,49:829-835.
[126] 1] Kretsinger RH,Nockolds CE.Carp muscle calcium-binding protein II. Structure determination and general description. Journal of Biological Chemistry, 1973,248(9):3313-3326.
[127] [2] Lander ES,Linton LM,Birren B,Nusbaum C,etal.Initial sequencing and analysis of the human genome. Nature, 2001,409(6822):860-921.
[128] [3] Carafoli E,Santella L,Branca D,etal.Generation control and proces-
[129] sing of cellular calcium signals. Critical Reviews in Biochemistry and Molecular Biology, 2001,36(2):107-260.
[130] [4] chwaller B.The continuing disappearance of “pure” Ca2+ buffers. Cellular and Molecular Life Sciences ,2009.66(2):275-300.
[131] [5] Silva AC,Reinach FC.Calcium binding induces conformational changes in muscle regulatory proteins. Trends in Biochemical Sciences, 1991,16(2):53-57.
[132] [6] Baumgartel K,Mansuy IM.Neural functions of calcineurin in synaptic plasticity and memory. Learning and Memory, 2012,19(9):375
[133] -384.
[134] [7] Yanez M,Gil-Longo J,Campos-Toimil M.Calcium binding proteins.Advances in Experimental Medicine and Biology, 2012,740:4
[135] 61-482.
[136] [8] Gifford JL, Walsh MP, Vogel HJ. Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochemical Journal, 2007,405(2):199-221.
[137] [9] da Silva AC, Kendrick-Jones J, Reinach FC. Determinants of Ion Specificity on EF-hands Sites:Conversion of the Ca2+/Mg2+ site of smooth muscle myosin regulatory light chain into a Ca(2+)-specific site. Journal of Biological Chemistry, 1995,270(12):6773-6778.
[138] [10] Grabarek Z. Structural Basis for Diversity of the EF-hand Calcium-binding Proteins. Journal of Molecular Biology, 2006,395(3)
[139] :509-525.
[140] [11] Strynadka NC, James MN. Crystal structures of the helix-loop-h
[141] lelix calcium-binding proteins. Annual Review of Biochemistry, 1989,
[142] 58:951-998.
[143] [12] Vijay-Kumar S,Cook WJ. Structure of a sarcoplasmic calcium-bi
[144] nding protein from Nereis diversicolor refined at 2.0 A resolution. Journal of Molecular Biology,1992,224(2):413-426.
[145] [13] Cook WJ,Jeffrey LC,Cox JA,et al. Structure of a sarcoplasmic calcium-binding protein from amphioxus refined at 2.4 A resolution.Jo-
[146] urnal of Molecular Biology,1993,229(2):461-471.
[147] [14] Reid RE. Synthetic fragments of calmodulin calcium-binding site III. A test of the acid pair hypothesis. Journal of Molecular Biology,1990,265(11):5971-5976.
[148] [15] Shaw GS,Hodges RS, Sykes BD. Calcium-induced peptide association to form an intact protein domain: 1H NMR structural evidence. Science,1990,249(4966):280-283.
[149] [16] Linse S,Thulin E, Sellers P. Disulfide bonds in homo- and heter-
[150] odimers of EF-hand subdomains of calbindin D9k: stability,calcium binding, and NMR studies. Protein Science,1993,2(6):985-1000.
[151] [17] Durussel I,Luan-Rilliet Y,Petrova T,etal.Cation binding and conformation of tryptic fragments of Nereis sarcoplasmic calcium-bin-
[152] ding protein:calcium-induced homo-and heterodimerization. Biochemi-
[153] stry,1993,32(9):2394-2400.
[154] [18] RE Reid,J Gariepy,AK Saund, RS Hodges.Calcium-induced protein folding. Structure-affinity relationships in synthetic analogs of the helix-loop-helix calcium binding unit. Journal of Biological Chemistry,1981,256(6):2742-2751.
[155] [19] Lopez MM,Chin DH, Baldwin RL, etal. The enthalpy of the alanine peptide helix measured by isothermal titration calorimetry using metal-binding to induce helix formation. Proceedings of the National Academy of Sciences, 2002,99(3):1298-1302.
[156] [20] Babu YS,Sack JS,Greenhough TJ,etal.Three-dimensional struct-
[157] ure of calmodulin. Nature, 1985,315(6014):37-40.
[158] [21] Herzberg O,James MN.Refined crystal structure of troponin C from turkey skeletal muscle at 2.0 A resolution. Journal of Molecular Biology,1988,203(3):761-779.
[159] [22] Ames JB,Hendricks KB,Strahl T,etal. Structure and calcium-bind-
[160] ing properties of Frq1, a novel calcium sensor in the yeast Saccharomyces cerevisiae. Biochemistry, 2000,39(40):12149-12161.
[161] [23] Rabah G,Popescu R,Cox JA,etal. Solution structure and internal dynamics of NSCP,a compact calcium-binding protein. FEBS Journal,
[162] 2005,272(8):2022-2036.
[163] [24] Kojetin DJ,Venters RA,Kordys DR, etal. Structure,binding interface and hydrophobic transitions of Ca2+-loaded calbindin-D(28K). Nature Structural & Molecular Biology,2006,13(7):641-647.
[164] [25] Brunet S,Scheuer T,Klevit R,et al. Modulation of CaV1.2 channels by Mg2+ acting at an EF-hand motif in the COOH-terminal domain. The Journal of General Physiology,2005,126(4):311-323.
[165] [26] Babini E,Bertini I,Capozzi F,et al. Principal component analysis of the conformational freedom within the EF-hand superfamily. Journal of Proteome Research,2005,4(6):1961-1971.
[166] [27] Cox JA, Durussel I, Scott DJ, et al. Remodeling of the AB site of rat parvalbumin and oncomodulin into a canonical EF-hand. European Journal of Biochemistry,1999,264(3):790-799.
[167] [28] Herzberg O,James MN. Structure of the calcium regulatory muscle protein troponin-C at 2.8 A resolution. Nature, 1985,313(6004)
[168] :653-659.
[169] [29] Herzberg O,Moult J,James MN. A model for the Ca2+-induced conformational transition of troponin C. A trigger for muscle contraction. Journal of Biological Chemistry,1986,261(6):2638-2644.
[170] [30] Chin D, Means, AR. Calmodulin: a prototypical calcium sensor.Trends in Cell Biology,2000,10:322-328
[171] [31] Kuboniwa H,Tjandra N,Grzesiek S,etal. Solution structure of calcium-free calmodulin. Nature. Nature Structural & Molecular Biology,1995,2:768-776.
[172] [32] Zhang M,Tanaka T,Ikura M. Calcium-induced conformational transition revealed by the solution structure of apo calmodulin. Nature Structural & Molecular Biology,1995,2(9):758-767.
[173] [33] Al-Shanti N,Stewart CE. Ca2+/calmodulin-dependent transcriptio-
[174] nal pathways: potential ediators of skeletal muscle growth and development. Biological reviews of the Cambridge Philosophical Society,2009,84(4):637-652.
[175] [34] Swindells MB,Ikura M. Pre-formation of the semi-open conformation by the apo-calmodulin C-terminal domain and implications for binding IQ-motifs. Nature Structural & Molecular Biology,1996,3(6):501-504.
[176] [35] Sorensen BR,Faga LA,Hultman R, et al. An interdomain linker increases the thermostability and decreases the calcium affinity of the calmodulin N-domain. Biochemistry,2002,41(1):15-20.
[177] [36] Anthis NJ,Doucleff M,Clore GM.Transient, sparsely populated compact states of apo and alcium-loaded calmodulin probed by paramagnetic relaxation enhancement:interplay of conformational selection and induced fit. J Am Chem Soc, 2011,133(46):18966-18974.
[178] [37] Otterbein LR,Kordowska J,Witte-Hoffmann C,etal.Crystal structures of S100A6 in the Ca(2+)-free and Ca(2+)-bound states: the calcium sensor mechanism of S100 proteins revealed at atomic resolution. Structure,2002,10(4):557-567.
[179] [38] Drohat AC,Tjandra N, Baldisseri DM, etal. The use of dipolar couplings for determining the solution structure of rat apo-S100B(beta-
[180] beta). Protein Science,1999,8(4):800-809.
[181] [39] Yap KL, Ames JB, Swindells MB, etal. Diversity of conformation-
[182] al states and changes within the EF-hand protein superfamily. Proteins,1999,37(3):499-507.
[183] [40] Colotti G, Zamparelli C,Verzili D,etal. The W105G and W99G sorcin mutants demonstrate the role of the D helix in the Ca2+-depende-
[184] nt interaction with annexin VII and the cardiac ryanodine receptor. Biochemistry, 2006,45(41):12519-12529.
[185] [41] Watanabe M,Konishi M. Intracellular calibration of the fluoresce-
[186] nt Mg2+ indicator furaptra in rat ventricular myocytes. Pflugers Arch,2001,442(1):35-40.
[187] [42] Schmidt H,Arendt O, Brown EB,etal. Parvalbumin is freely mobile in axons, somata and nuclei of cerebellar Purkinje neurones. Journal of Neurochemistry,2007,100(3):727-735.
[188] [43] Babini E,Bertini I,Capozzi F, etal. Solution structure of human beta-parvalbumin and structural comparison with its paralog alpha-par-
[189] valbumin and with their rat orthologs. Biochemistry,2004,43(51):1607
[190] 6-16085.
[191] [44] Henzl MT,Tanner JJ. Solution structure of Ca2+-free rat beta-parvalbumin (oncomodulin). Protein Science, 2007,16(9):1914-19
[192] 26.
[193] [45] Cedervall T,Andre I,Selah C, et al. Calbindin D28k EF-hand ligand binding and oligomerization: four high-affinity sites--three modes of action. Biochemistry,2005,44(41):13522-13532.
[194] [46] Berggard T,Miron S,Onnerfjord P, et al. Calbindin D28k exhibits properties characteristic of a Ca2+ sensor. Journal of Biological Chemistry,2002,277(19):16662-16672.
[195] [47] Berggard T,Silow M,Thulin E, et al. Ca(2+)-and H(+)-dependent conformational changes of calbindinD(28k). Biocheistry, 2000,39(23):68
[196] 64-6873.
[197] [48] Berridge MJ,Bootman BD, Lipp P.Calcium—a life and death signal.Nature,1998,395:645–648.
[198] [49] Berridge MJ,Lipp P,Bootman MD. The versatility and universality of calcium signalling. Nature reviews molecular cell biology,2000,1:11
[199] -21.
[200] [50] Andersson M,Malmendal MA,Linse S,etal.Structural basis for the negative allostery between Ca2+-and Mg2+-binding in the intracellular Ca2+-receptor calbindinD9k.Protein Science,1997,6:1139-1147.
[201] [51] Shannon RD.Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides, Acta Crystallographica Section A,1976,32:751-767.
[202] [52]Tanokura M,Yamada K.Calorimetric study of Ca-and Mg-binding by calmodulin.The Journal of Biochemistry (Tokyo),1983,94:607-609.
[203] [53] Grabarek Z. Insights into modulation of calcium signaling by magnesium in calmodulin, troponin C and related EF-hand proteins.Biochimica et Biophysica Acta,2011,1813:913-921.
[204] [54] Black DJ, Leonard J, Persechini A. Biphasic Ca -dependent switching in a calmodulin-IQ domain complex, Biochemistry,2006,45:
[205] 6987-6995.
[206] [55] Moroz OV,Antson AA,Grist SJ,etal.Structure of the human S100A12–copper complex: implications for host parasite defence,Acta Crystallographica Section D,2003,59:859-867.
[207] [56] Moroz OV,Blagova EV,Wilkinson AJ,etal.The crystal structures of human S100A12 in apo form and in complex with zinc: new insights into S100A12 oligomerisation. Journal of Molecular Biology,2009,391
[208] :536-551.
[209] [57] Botelho HM,Koch M,Fritz G,etal.Metal ions modulate the folding and stability of the tumor suppressor protein S100A2. FEBS Journal,2009,276,1776-1786.
[210] [58] Schaub MC,Heizmann CW.Calcium, troponin, calmodulin, S100 proteins: from myocardial basics to new therapeutic strategies.Bioche-
[211] mical and Biophysical Research Communications 2008,369:247-264
[212] [59] Leukert N,Vogl T,Strupat K,etal.Calcium-dependent tetramer formation of S100A8 and S100A9 is essential for biological activity, J. Mol. Biol,2006,359:961-972.
[213] [60] Ostendorp T,Leclerc E,Galichet A,etal. Structural and functional insights into RAGE activation by multimeric S100B, EMBO Journal,2007,26:3868-3878.
[214] [61] Nishikawa T,Lee IS,Shiraishi N, etal.Identification of S100B proteinas copper-binding protein and its suppression of copper-induced cell damage.Journal of Biological Chemistry,1997,272:23037-23041.
[215] [62] Chao SH, Bu CH, Cheung WY.Activation of troponin C by Cd2+ and Pb2+. Arch Toxicol 1990,64:490-496.
[216] [63] Aramini JM,Hiraoki T,Grace MR,Swaddle TW,etal.NMR and stopped-flow studies of metal ion binding to alpha-lactalbumins.Bioch-
[217] im Biophys Acta,1996,1293:72-82.
[218] [64] Kumar et al. BMC Biophysics,2012,5:15 http://www.biomedcent-
[219] ral.com/2046-1682/5/15.
[220] [65] Klee CB,Means AR. Keeping up with calcium: conference on calcium-binding proteins and calcium function in health and disease. EMBO Reports, 2002 Sep;3(9):823-827.
[221] [66] Zhu Y.Roles of Calcium Binding Protein in Neural System Diseases. Chinese Journal of Biochemis try and Molecular Biology, 2008,24( 5):413-418.
[222] [67] Marenholz I,Lovering RC,Heizmann CW,An up date of the S100 nomenclature, Biochimica et Biophysica Acta,2006,1763:1282-1283.
[223] [68] Heizmann CW,Ackermann GE,Galichet A. Pathologies involving the S100 proteins and RAGE, Subcellular Biochemistry,2007,45:93-13
[224] 8.
[225] [69] Skelton NJ,Kordel, Akke M,etal.Signal transduction versus buffering activity in Ca 2+-binding proteins,Nature Structural Biology,1
[226] [70] Donato R.Intracellular and extracellular roles of S100 proteins. Microscopy Research and Technique, 2003,60(6):540-551.
[227] [71] Nacken W,Kerkhoff C.The hetero-oligomeric complex of the S100A8/S100A9 protein is extremely protease resistant. FEBS Letter,2007,581:5127-5130.
[228] [72] Gebhardt C,Nemeth J,Angel P.S100A8 and S100A9 in inflamma-
[229] tion and cancer. Biochemical Pharmacology,2006,72:1622-1631.
[230] [73] Corbin BD,Seeley EH,Raab A, etal.Celation and inhibition of bacterial growth in tissue abscesses. Science ,2008,319:962-965.
[231] [74] Yanamandra K, Alexeyev O, Zamotin V, Srivastava V, etal. Amyloid frmation by the po-Inflammatory S100A8/A9 poteins in the aeing postate. PLoS ONE,2009,4:e5562.
[232] [75] Handley MT, Lian LY,Haynes LP,& Bur-goyne RD: 2010. Structural and functional deficits in a neuronal calcium sensor-1 mutant identifiedi nacase of autisticspectrum disorder.PLoS ONE,5:e10534.
[233] [76] Boehmerle W, Zhang K, Sivula M, etal.Chronic exposure to paclitaxel diminishes phosphoinositide signaling by calpain-mediated neuronal calcium sensor-1 degrada-tion. Proceedings of the National Academy of Sciences,2007, 104:11103-11108.
[234] [77] Zhang K, Heidrich FM, DeGray B, etal. Paclitaxel accelerates spontaneous calcium oscillations in cardiomyocytes by interact- ing with NCS-1 and the InsP3R. Journal of Molecular Cell Biology Cardiol ,2010,49:829-835.