聚合物驱油剂的性能变化规律研究(I)——聚合物驱油剂的热稳定性研究
Study of Performance Changes of Polymer Flooding Agent (I)——Study of Thermal Stability of Polymer Flooding Agent
DOI: 10.12677/OJNS.2013.12003, PDF, HTML,  被引量 下载: 2,963  浏览: 10,026  国家科技经费支持
作者: 朱玥珺*:中海油研究总院海洋石油高效开发国家重点实验室,北京
关键词: 聚合物驱油剂热稳定性荧光动态光散射红外Polymer Flooding Agent; Thermal Stability; Fluorescence; Dynamic Light Scattering; Infrared Spectroscopy
摘要: 本文采用红外、动态光散射、流变、荧光技术,研究了老化时间、模拟水矿化度、老化温度对水溶性疏水缔合聚合物本体结构和溶液性质的影响,探讨了分子组成、构象变化对分子间缠结、疏水缔合等结构的作用,建立了不同矿化度下水溶性疏水缔合聚合物溶液的温度、老化时间相关的热降解二元动力学方程。实验结果表明,疏水缔合结构的存在使其在发挥抗盐、增稠作用时能够经受一定时间的考验,老化引起的水解程度的适度增加反而有利于聚合物的增粘性。
Abstract: The effect of aging time, water salinity, and aging temperature on the structure and aqueous behavior of the water-soluble hydrophobically associating polymer is investigated by FTIR, DLS, rheological and fluorescence technologies. The influence of macromolecular composition and conformation on intermolecular entanglement and hydrophobically associating are explored. For different salinities, the thermal degradation binary kinetic equation with aging time and temperature are established. The results show that after shearing, the thickening effect will rise up in a certain time, due to the hydrophobically associating structure. And the thickening property is enhanced by moderate increase of hydrolysis level caused by aging effect.
文章引用:朱玥珺. 聚合物驱油剂的性能变化规律研究(I)——聚合物驱油剂的热稳定性研究[J]. 自然科学, 2013, 1(2): 15-20. http://dx.doi.org/10.12677/OJNS.2013.12003

参考文献

[1] A. Hill, F. Candau and J. Selb. Properties of hydrophobically associating polyacrylamides: Influence of the method of synthe- sis. Macromolecules, 1993, 26(17): 4521-4532.
[2] K. C. Taylor, H. A. Nasr-El-Din. Water-soluble hydrophobically associating polymers for improved oil recovery: A literature re- view. Journal of Petroleum Science and Engineering, 1998, 19 (3-4): 265-280.
[3] L. Ye, R. Huang, J. Wu, et al. Synthesis and rheological behavior of Poly[acrylamide-acrylic acid-N-(4-butyl) phenylacrylamide] hydrophobically modified polyelectrolytes. Colloid and Polymer Science, 2004, 282(4): 305-313.
[4] 谢明辉, 周国忠, 刘敏, 吴华晓等. 搅拌槽内新型疏水缔合聚合物AP-P4的溶解性[J]. 华东理工大学学报, 2010, 36(3): 329- 333.
[5] A. M. S. Maia, R. Borsali and R. C. Balaban. Comparison be- tween a polyacrylamide and a hydrophobically modified poly- acrylamide flood in a sandstone core. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2009, 29(2): 505-509.
[6] C. R. Zhong, R. H. Huang and J. Y. Xu. Characterization, so- lution behavior, and microstructure of a hydrophobically asso- ciating nonionic copolymer. Journal of Solution Chemistry, 2008, 37(9): 1227-1243.
[7] I. V. Blagodatskikh, O. V. Vasil’eva, E. M. Ivanova, et al. New approach to the molecular characterization of hydrophobically modified polyacrylamide. Polymer, 2004, 45(17): 5897-5904.
[8] F. Boschet, C. Branger, A. Margaillan, et al. Synthesis, chara- cterisation and aqueous behaviour of a one-ended perfluoro- carbon-modified Poly(ethylene glycol). Polymer, 2002, 43(19): 5329-5334.
[9] J. Yang, W.Y. Huang. Synthesis and characterization of a novel fluorine-containing hydrophobically associating polymer. Chi- nese Journal of Polymer Science, 1999, 17(3): 281-288.
[10] 周守为, 韩明, 张健等. 用于海上油田化学驱的聚合物研究[J]. 中国海上油气(工程), 2007, 19(1): 25-29.
[11] J. Hou, Z. Q. Li, S. K. Zhang, et al. Computerized tomography study of the microscopic flow mechanism of polymer flooding. Transport in Porous Media, 2009, 79(3): 407-418.
[12] H. E. Meybodi, R. Kharrat and X. Q. Wang. Study of micro- scopic and macroscopic displacement behaviors of polymer solution in water-wet and oil-wet media. Transport in Porous Media, 2011, 89(1): 97-120.
[13] T. S. Urbissinova, J. J. Trivedi and E. Kuru. Effect of elasticity during viscoelastic polymer flooding: A possible mechanism of increasing the sweep efficiency. Journal of Canadian Petroleum Technology, 2010, 49(12): 49-56.
[14] E. L. Yang, K. P. Song. Displacement mechanism of polymer flooding by molecular tribology. Chinese Physics Letters, 2006, 23(9): 2491-2493.
[15] Q. Yu, H. Jiang, Y. Song, et al. Chemical flooding for enhanced recovery. Energery Sources, Part A, 2012, 34(5-8): 478-483.
[16] J. C. Zhang, K. P. Song, L. Liu, et al. Investigation on mech- nisms of polymer enhanced oil recovery by nuclear magnetic re- sonance and microscopic theoretical analysis. Chinese Physics Letters, 2008, 25(5): 1750-1752.
[17] M. Q. Lin, M. Y. Li, Z. J. Wang, et al. A study of thermal stability of linked polymer solution. Journal of Dispersion Science and Technology, 2009, 30(6): 753-756.
[18] R. S. Seright, A. R. Campbell, P. S. Mozley, et al. Stability of partially hydrolyzed polyacrylamides at elevated temperatures in the absence of divalent cations. SPE Journal, 2010, 15(2): 341- 348.
[19] G. J. Wang, X. L. Yi, X. F. Feng, et al. Synthesis and study of a new copolymer for polymer flooding in high-temperature, high- salinity reservoirs. Chemistry and Technology of Fuels and Oils, 2012, 48(2): 112-119.