利用基于近红外光谱的超扫描技术研究人类交互行为
Study of Human Interactive Behavior Using a NIRS-Based Hyperscanning Technique
DOI: 10.12677/IJPN.2015.44004, PDF, HTML, XML, 下载: 2,892  浏览: 7,214  国家自然科学基金支持
作者: 覃 龙, 王严锋, 闫相国*:西安交通大学,生物医学信息工程教育部重点实验室,陕西 西安
关键词: 社会交互行为近红外光谱超扫描同步挤压小波变换相同步Social Interactive Behavior Near Infrared Spectroscopy Hyperscanning Synchrosqueezed Wavelet Transform Phase Synchronization
摘要: 目的:利用基于近红外光谱的超扫描技术研究人类社会交互活动过程中的脑功能变化。方法:通过合作、竞争任务模拟人类不同的社会交互活动,招募15对健康大学生参与实验,使用两个便携式双通道近红外记录器同步记录实验过程中一对受试者的左、右前额叶的脑血氧信号,提出并利用加权挤压小波相同步方法计算合作任务与竞争任务期间血红蛋白信号的低频成分的相同步指数。结果:左侧血红蛋白信号对的相同步指数竞争任务高于合作任务,且具有显著性差异(P < 0.05);与此相反,右侧相同步指数无显著性差异。结论:近红外光谱测量具有无创、便携,且可在完全自然环境下完成等优点,基于近红外光谱的超扫描技术可为社会认知行为研究提供一种新的手段。
Abstract: Objective: A hyperscanning technique based on near infrared spectroscopy (NIRS) is used to study inter-brain activity in two persons while they play social interactive tasks. Methods: The activities of human interactivity are simulated by a group of cooperation and competition tasks. 15 pairs of heath students were recruited. The left and right prefrontal cerebral hemoglobin signals of a pair of subjects were simultaneously recorded during the experiment using two portable dual-channel near infrared recorders. A phase synchronized index method based on synchrosqueezed wavelet transform was presented and applied to calculate the synchronized indices of the low-frequency component of the cerebral hemoglobin signal pairs. Results: The phase synchronized index of the left hemoglobin signal pair in cooperation task was higher than in competition one. Both indices showed a significant difference (P < 0.05). In contrast, there was no significant difference in the right side. Conclusion: NIRS measurement is noninvasive and portable, and could be carried out in a naturalistic environment. The NIRS based hyperscanning technique can provide a new approach for the study of social cognitive behavior.
文章引用:覃龙, 王严锋, 闫相国. 利用基于近红外光谱的超扫描技术研究人类交互行为[J]. 国际神经精神科学杂志, 2015, 4(4): 19-27. http://dx.doi.org/10.12677/IJPN.2015.44004

参考文献

[1] Hagan, C.C., Hoeft, F., Mackey, A., et al. (2008) Aberrant Neural Function during Emotion Attribution in Female Sub- jects with Fragile X Syndrome. Journal of the American Academy of Child & Adolescent Psychiatry, 47, 1443-1454.
http://dx.doi.org/10.1097/CHI.0b013e3181886e92
[2] Dunbar, R.I. (2009) The Social Brain Hypothesis and Its Implications for Social Evolution. Annals of Human Biology, 36, 562-572.
http://dx.doi.org/10.1080/03014460902960289
[3] Gallagher, H.L. and Frith, C.D. (2003) Functional Imaging of Theory of Mind. Trends in Cognitive Science, 7, 77-83.
http://dx.doi.org/10.1016/S1364-6613(02)00025-6
[4] Greebe, J.D., Sommerville, R.B., et al. (2001) An fMRI Investigation of Emotional Engagement in Moral Judgment. Science, 293, 2105-2108.
http://dx.doi.org/10.1126/science.1062872
[5] King-Casas, B., Tomlin, D., et al. (2005) Getting to Know You: Reputation And trust in a Two-Person Economic Exchange. Science, 308, 78-83.
http://dx.doi.org/10.1126/science.1108062
[6] Piggot, J., Kwon, H., Mobbs, D., et al. (2004) Emotional Attribution in High-Functioning Individuals with Autistic Spectrum Disorder: A Functional Imaging Study. Journal of the American Academy of Child & Adolescent Psychiatry, 43, 473-480.
http://dx.doi.org/10.1097/00004583-200404000-00014
[7] Watson, C., Hoeft, F., Garrett, A.S., et al. (2008) Aberrant Brain Activation during Gaze Processing in Boys with Fragile X Syndrome. Archives of General Psychiatry, 65, 1315-1323.
http://dx.doi.org/10.1001/archpsyc.65.11.1315
[8] Reiss, A.L., Eckert, M.A., Rose, F.E., et al. (2004) An Experiment of Nature: Brain Anatomy Parallels Cognition and Behavior in Williams Syndrome. The Journal of Neuroscience, 24, 5009-5015.
http://dx.doi.org/10.1523/JNEUROSCI.5272-03.2004
[9] Cui, X., Bryant, D.M., et al. (2012) NIRS-Based Hyper-scanning Reveals Increased Interpersonal Coherence in Superior Frontal Cortex during Cooperation. NeuroImage, 59, 2430-2437.
http://dx.doi.org/10.1016/j.neuroimage.2011.09.003
[10] Ekkekakis, P. (2009) Illuminating the Black Box: Investigating Prefrontal Cortical Hemodynamics during Exercise with Near-Infrared Spectroscopy. Journal of Sport and Exercise Psychology, 31, 505-553.
[11] Dommer, L., Jager, N., Scholkmann, F., et al. (2012) Between-Brain Coherence during Joint N-Back Task Performance: A Two-Person Functional Near-Infrared Spectroscopy Study. Behavior Brain Research, 234, 212-222.
http://dx.doi.org/10.1016/j.bbr.2012.06.024
[12] Bob, P., Palus, M., Šusta, M., et al. (2008) EEG Phase Synchronization in Patients with Paranoid Schizophrenia. Neuroscience Letters, 447, 73-77.
http://dx.doi.org/10.1016/j.neulet.2008.09.055
[13] Hammond, C., Bergman, H. and Brown, P. (2007) Pathological Synchronization in Parkinson’s Disease: Networks, Models and Treatments. Trends in Neurosciences, 30, 357-364.
http://dx.doi.org/10.1016/j.tins.2007.05.004
[14] Lehnertz, K. and Elger, C.E. (1998) Can Epileptic Seizures Be Predicted? Evidence from Nonlinear Time Series Analysis of Brain Electrical Activity. Physical Review Letters, 80, 5019-5022.
http://dx.doi.org/10.1103/PhysRevLett.80.5019
[15] Rosenblum, M.G., Pikovsky, A.S. and Kurths, J. (1997) Phase Synchronization of Chaotic Oscillators. Physical Review Letters, 76, 1804-1807.
http://dx.doi.org/10.1007/bfb0105613
[16] Angelini, L., De, T.M., Guido, M., et al. (2004) Steady-State Visual Evoked Potentials and Phase Synchronization in Migraine Patients. Physical Review Letters, 93, Article ID: 038103.
http://dx.doi.org/10.1103/PhysRevLett.93.038103
[17] Li, C. and Liang, M. (2012) A Generalized Synchrosqueezing Transform for Enhancing Signal Time-Frequency Representation. Signal Processing, 92, 2264-2274.
http://dx.doi.org/10.1016/j.sigpro.2012.02.019
[18] 刘景良, 任伟新, 王佐才, 等. 基于同步挤压小波变换的结构瞬时频率识别[J]. 振动与冲击, 2013(32): 37-42.
[19] Davidson, R.J., Chapman, J.P., Chapman, L.J., et al. (1990) Asymmetrical Brain Electrical Activity Discriminates between Psychometrically-Matched Verbal and Spatial Cognitive Tasks. Psychophysiology, 27, 528-543.
http://dx.doi.org/10.1111/j.1469-8986.1990.tb01970.x
[20] Beauregard, M., Lévesque, J. and Bourgouin, P. (2001) Rapid Communication Neural Correlates of Conscious Self- Regulation of Emotion. The Journal of Neuroscience, 18, 161-166.
[21] Amodio, D.M. and Frith, C.D. (2006) Meeting of Minds: The Medial Frontal Cortex and Social Cognition. Nature Reviews Neuroscience, 7, 268-277.
http://dx.doi.org/10.1038/nrn1884