含电动汽车接入的配网动态功率不平衡解决方法
A Method Solving Dynamic Power Imbalance of Distribution Network Containing Electric Vehicles Access
DOI: 10.12677/SG.2016.61004, PDF, HTML, XML, 下载: 2,629  浏览: 6,546  国家自然科学基金支持
作者: 乌 睿*, 熊小伏, 胡婷立, 欧阳金鑫:输配电装备及系统安全与新技术国家重点实验室(重庆大学),重庆
关键词: 电动汽车随机负载配电变压器功率平衡变流器Electric Vehicles Random Load Distribution Transformer Power Balance Converter
摘要: 随着电动汽车最近几年的快速发展,电动汽车接入配网产生的随机负载将增加配电变压器输送电能的波动性,加剧配网的功率不平衡。当大量电动汽车同时充电时可能超出传统配网的设计预期,配电变压器需要增加比平时更多的额外功率。若更换容量更大的配电变压器,可能仍难以满足要求,且增加不必要的投资。因此,本文提出一种仅需在现有配网结构上进行改进的动态功率平衡方法,采用三相电压型变流器通过直流线路联络配网中的各配电变压器以实现负载的合理分配和降低电动汽车负载的冲击。通过实测数据和蒙特卡洛模拟分析法建立电动汽车接入配网的负载模型,仿真分析表明该配网动态功率平衡系统具有较好的实用性。
Abstract: With the rapid development of electric vehicles in recent years, the random load producing from the electric vehicles access to the distribution network may increase the volatility of electricity and aggravate the power imbalance of the distribution network. When a large number of electric vehicles are being charged at the same time, the random load may exceed the expectation design of the traditional distribution network and distribution transformers need to transfer more power. If using large capacity distribution transformers, it may still be difficult to meet the requirements and increase investment. Whereas, a method solving dynamic power imbalance of distribution network is proposed in this paper. In this solution, DC transmission lines are used to link different distribution transformers, and based on the Three-Phase Voltage Source Converter, which results in a reasonable distribution of the load and mitigates the impact of soaring load of electric vehicle. This paper describes a mathematical model of the load of distribution network containing electric vehicles access, which is simulated by measured data and Monte Carlo simulation method. The effectiveness of the proposed method is verified through the simulation analysis.
文章引用:乌睿, 熊小伏, 胡婷立, 欧阳金鑫. 含电动汽车接入的配网动态功率不平衡解决方法[J]. 智能电网, 2016, 6(1): 26-37. http://dx.doi.org/10.12677/SG.2016.61004

参考文献

[1] Duvall, M., Knipping, E., Alexander, M., et al. (2007) Environmental Assessment of Plug-In Hybrid Electric Vehicles. Volume 1: Nationwide Greenhouse Gas Emissions. Electric Power Research Institute, Palo Alto, 1015325.
[2] 范玉宏, 张维, 陈洋. 国外电动汽车发展分析及对我国的启示[J]. 华中电力, 2010, 23(6): 8-12.
[3] Rowand, M. (2009) The Electricity Utility-Business Case. Plug-In Conference, San Jose, EPRI, Silcon Valley Leadership Group.
[4] Hubner, M., Zhao, L., Mirbach, T., et al. (2009) Impact of Large-Scale Electric Vehicle Application on the Power Supply. IEEE Electrical Power and Energy Conference, Montreal, 22-23 October 2009, 1-6.
http://dx.doi.org/10.1109/epec.2009.5420866
[5] Adornato, B., Patil, R. and Filipi, Z. (2009) Characterizing Naturalistic Driving Patterns for Plug-In Hybrid Electric Vehicle Analysis. IEEE Vehicle Power and Propulsion Con-ference, Michigan, 7-10 September 2009, 655-660.
[6] Qlan, K.J., Zhou, C.K., Allan, M., et al. (2011) Modeling of Load Demand Due to EV Battery Charging in Distribution Systems. IEEE Transactions on Power Systems, 26, 802-810.
http://dx.doi.org/10.1109/TPWRS.2010.2057456
[7] 万路路, 王磊, 丁昊. 配电网电动汽车优化充电研究[J]. 华东电力, 2011, 39(12): 2049-2053.
[8] 李惠玲, 白晓民, 谭闻. 电动汽车与分布式发电入网的协调控制研究[J]. 电网技术, 2013, 37(8): 2108-2115.
[9] 赵俊华, 文福拴, 薛禹胜. 计及电动汽车和风电出力不确定性的随机经济调度[J]. 电力系统自动化, 2011, 34(20): 22-29.
[10] Clement, K., Haesen, E. and Driesen, J. (2010) The Impact of Charging Plug-In Hybird Electric Vehicles on a Residential Distribution Grid. IEEE Transactions on Power Systems, 25, 371-380.
http://dx.doi.org/10.1109/TPWRS.2009.2036481
[11] Jason, W. and Lincoln, P. (2009) Impact of Plug-Hybird Electric Vehicles on California’s Electricity Grid. Duke University, Durham.
[12] Putrus, G.A., Suwanapingkarl, P., Johnston, P., et al. (2009) Impact of Electric Vehicles on Power Distribution Networks. IEEE Vehicle Power and Pro-pulsion Conference, Dearborn, 7-10 September 2009, 827-831.
http://dx.doi.org/10.1109/vppc.2009.5289760
[13] Balmer, M. (2007) Travel Demand Modeling for Multi-Agent Traffic Simulations: Algorithms And Systems. ETH Zürich, Zürich.
[14] 李俄收, 吴文民. 电动汽车蓄电池充电对电力系统的影响及对策[J]. 华东电力, 2010, 38(1): 109-113.
[15] 于大洋, 宋曙光, 张波, 等. 区域电网电动汽车充电与风电协同调度的分析[J].电力系统自动化, 2011, 35(14): 24- 29.
[16] De Nigris, M., Gianinoni, I., Grillo, S., Grillo, S., Msssucco, S. and Silvestro, F. (2010) Impact Evaluation of Plug-in Electric Vehicles on Electric Distribution Networks. Harmonics and Quality of Power (ICHQP), No. 3, 1-6.
[17] 田立亭, 史双龙, 贾卓. 电动汽车充电功率需求的统计学建模方法[J]. 电网技术, 2010, 34(11): 126-130.