磁场环境下输流双壁碳纳米管中波的传播
Wave Propagation in Fluid-Conveying Double-Walled Carbon Nanotubes under Magnetic Field
DOI: 10.12677/IJFD.2016.43007, PDF, HTML, XML, 下载: 1,678  浏览: 4,424  国家自然科学基金支持
作者: 甄亚欣:华北电力大学数理学院,北京
关键词: 输流双壁碳纳米管波的传播磁场非局部效应Fluid-Conveying Double-Walled Carbon Nanotubes Wave Propagation Magnetic Field Nonlocal Effect
摘要: 基于非局部弹性理论,本文研究了磁场环境下输流双壁碳纳米管中弯曲波的传播特性。采用非局部欧拉梁理论,建立磁场作用下输流双壁碳纳米管得波动方程,双壁碳纳米管的两层管之间通过范德华力相互作用。通过绘制不同情况下的色散关系图,分析了管内流体、磁场强度以及非局部参数对输流双壁碳纳米管中波的传播特性的影响,结果表明,磁场对波的传播频率有重要影响,增强磁场将增大波的传播频率,且增强磁场会减弱非局部效应。
Abstract: In this paper, wave propagation in fluid-conveying double-walled carbon nanotubes under magnetic field is investigated based on nonlocal elasticity theory. The wave equation of fluid-conveying double-walled carbon nanotubes under magnetic field is derived utilizing nonlocal Euler beam theory. The interaction of the double tubes is considered with the van der Waals interaction pres-sure. We analyze the influences of internal fluid, magnetic field intensity and nonlocal coefficient on the wave propagation characteristics of fluid-conveying double-walled carbon nanotubes through the dispersion relations under various circumstances. The results show that the magnetic field plays an important role on the wave propagation frequency. Increasing the magnetic intensity will increase the wave propagation frequency and weaken the nonlocal effect.
文章引用:甄亚欣. 磁场环境下输流双壁碳纳米管中波的传播[J]. 流体动力学, 2016, 4(3): 54-61. http://dx.doi.org/10.12677/IJFD.2016.43007

参考文献

[1] Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
http://dx.doi.org/10.1038/354056a0
[2] 甄亚欣. 输流碳纳米管的动力学行为研究[D]: [博士学位论文]. 哈尔滨: 哈尔滨工业大学, 2012.
[3] Govindjee, C.F. and Sackman, J.L. (1999) On the Use of Continuum Mechanics to Estimate the Properties of Nanotubes. Solid State Communications, 110, 227-230.
http://dx.doi.org/10.1038/354056a0
[4] Sohlberg, K.., Sumpter, B.G., Tuzun, R.E., et al. (1998) Continuum Methods of Me-chanics as a Simplified Approach to Structural Engineering of Nanostructures. Nanotechnology, 9, 30-36.
http://dx.doi.org/10.1088/0957-4484/9/1/004
[5] Eringen, A.C. (1972) Nonlocal Polar Elastic Continua. International Journal of Engineering Science, 10, 1-16.
http://dx.doi.org/10.1016/0020-7225(72)90070-5
[6] Eringen, A.C. and Edelen, D.G.B. (1972) On Nonlocal Elasticity. Inter-national Journal of Engineering Science, 10, 233-248.
http://dx.doi.org/10.1016/0020-7225(72)90039-0
[7] Yoon, J., Ru, C.Q. and Mioduchowski, A. (2003) Sound Wave Propagation in Multiwall Carbon Nanotubes. Journal of Applied Physics, 93, 4801-4806.
http://dx.doi.org/10.1063/1.1559932
[8] Natsuki, T., Tantrakarn, K. and Endo, M. (2004) Prediction of Elastic Properties for Single-Walled Carbon Nanotubes. Carbon, 42, 39-45.
http://dx.doi.org/10.1016/j.carbon.2003.09.011
[9] Dong, K., Wang, X. and Sheng, G.G. (2007) Wave Dispersion Characteristics in Fluid-Filled Carbon Nanotubes Embedded in an Elastic Medium. Model-ling and Simulation in Materials Science and Engneering, 15, 427-439.
http://dx.doi.org/10.1088/0965-0393/15/5/004
[10] Natsuki, T., Ni, Q.Q., Hayashi, T., et al. (2008) Wave Propagation in Double-Walled Carbon Nanotubes Conveying Fluid. Journal of Applied Physics, 103, 094312(1-5).
[11] Natsuki, T., Ni, Q.Q. and Endo, M. (2009) Analysis of the Vibration Characteristics of Fluid-Conveying Double- Walled Carbon Nanotubes. Journal of Applied Physics, 105, 094328(1-5).
[12] 王立峰, 郭万林, 胡海岩. 管内流体对单壁碳纳米管中弯曲波频散的影响[J]. 力学季刊, 2009, 30(1): 23-27.
[13] Wang, Y.Z., Li, F.M. and Kishimoto, K. (2010) Wave Propagation Characteristics in Fluid-Conveying Double-Walled Nanotubes with Scale Effects. Computational Materials Science, 48, 413-418.
http://dx.doi.org/10.1016/j.commatsci.2010.01.034
[14] Narendar, S., Gupt, S.S. and Gopalakrishnan, S. (2012) Wave Propaga-tion in Single-Walled Carbon Nanotube under Longitudinal Magnetic Field Using Nonlocal Euler-Bernoulli Beam Theory. Applied Mathematical Modelling, 36, 4529-4538.
http://dx.doi.org/10.1016/j.apm.2011.11.073
[15] He, X.Q., Kitipornchai, S. and Liew, K.M. (2005) Buckling Analysis of Multi-Walled Carbon Nanotubes: A Continuum Model Accounting for Van Der Waals Interaction. Journal of Mechanics and Physics of Solids, 53, 303-326.
http://dx.doi.org/10.1016/j.jmps.2004.08.003
[16] Wang, Q. (2005) Wave Propagation in Carbon Nanotubes via Nonlocal Con-tinuum Mechanics. Journal of Applied Physics, 98, 124301(1-6).