加力内锥的气膜冷却特性研究
Investigation of Film Cooling Characteristics with Inner Cone
DOI: 10.12677/JAST.2017.51003, PDF, HTML, XML, 下载: 1,580  浏览: 3,577 
作者: 王昌胜, 李 锋, 熊溢威, 杨宏宇, 周 韬:北京航空航天大学,能源与动力工程学院,北京;赵 凯:北京航空航天大学,能源与动力工程学院,北京;空军航空大学,吉林 长春
关键词: 冷却效率气膜冷却内锥密度比加力燃烧室Cooling Efficiency Film Cooling Inner Cone Density Ratio Afterburner
摘要: 为了满足新一代加力燃烧室进口温度的上升需求,有必要对内锥进行气膜冷却以降低其红外辐射。本文主要以试验和数值模拟相结合的方法,研究内锥的气膜冷却特性,找出中心锥的热点。结果表明:未冷却条件下,支板前缘和尾缘附近,内锥壁温较高;在5%冷气条件下,由于内锥前段冷却气膜覆盖不均匀,冷却效果较差,而内锥尖部由于回流区的影响,部分冷却气膜被吹离壁面,冷却效果一般。而且冷气和燃气密度比越大,冷气更容易贴壁面形成冷却气膜,冷却效率越高。
Abstract: In order to meet the increasing demand of the inlet temperature of the new generation afterburner, it is necessary to reduce the infrared radiation of the inner cone by film cooling. In this paper, both the experimental method and numerical simulation method are used to study the film cooling characteristics of the inner cone, find the hot spot of the inner cone and optimize the cooling scheme. The results show that the temperature of inner cone wall is higher near the front edge and the trailing edge of strut under uncooled condition; under the condition of 5% cold air, because of the inner cone in uneven cooling film covering, the cooling effect is poorer, and in the inner cone tip, since part of the cooling film is blown away from the wall due to the influence of backflow area, the cooling effect is general. And the greater of density ratio is, the easier it is to form a cooling film on the wall surface, and the higher the cooling efficiency is.
文章引用:王昌胜, 李锋, 熊溢威, 赵凯, 杨宏宇, 周韬. 加力内锥的气膜冷却特性研究[J]. 国际航空航天科学, 2017, 5(1): 17-26. https://doi.org/10.12677/JAST.2017.51003

参考文献

[1] Shan, Y., Zhang, J.-Z. and Pan, C.-X. (2013) Numerical and Experimental Investigation of Infrared Radiation Characteristics of a Turbofan Engine Exhaust System with Film Cooling Central Body. Aerospace Science and Technology, 28, 281-288.
[2] Choe, H., Days, W.M. and Moffat, R.J. (1973) Turbulent Boundary Layer on a Full-Coverage Film-Cooled Surface— An Experimental Heat Transfer Study with Normal Injection. Rep. HMT-22 Thermosciences Division, Department of Mechanical Engineering, Stanford University, Stanford.
[3] Leylek, J.H. and Zerkle, R.D. (1994) Discrete-Jet Film Cooling: A Comparison of Computational Results with Experiments. Journal of Turbomachinery, 116, 358-368.
[4] Saumweber, C., Schulz, A. and Wittig, S. (2002) Free-Stream Turbulence Effects on Film Cooling with Shaped Holes. Paper No. 2002-GT-30170, IGTI Turbo Expo, Amsterdam, 41-49.
https://doi.org/10.1115/gt2002-30170
[5] Sargison, J.E., Oldfield, M.L. and Guo, S.M. (2005) Flow Visualisation of the External Flow from a Converging Slot-Hole Film-Cooling Geometry. Experiments in Fluids, 38, 304-318.
https://doi.org/10.1007/s00348-004-0892-1
[6] Narzary, D.P., Gao, Z., Mhetras, S., et al. (2007) Effect of Unsteady Wake on Film-Cooling Effectiveness Distribution on a Gas Turbine Blade with Compound Shaped Holes. ASME Paper No. GT2007-27070.
[7] 许都纯, 徐红洲, 刘松龄. 单孔射流与主流相互作用时的流动和传热的实验研究[J]. 西北工业大学学报, 1997, 15(2), 165-172.
[8] 向安定, 罗小强, 朱惠人, 等.涡轮叶片表面气膜冷却的传热实验研究[J]. 航空动力学报, 2002, 17(5): 577-581.
[9] 李少华, 宋东辉, 刘建红, 等. 不同孔型平板气膜冷却的数值模拟[J]. 中国电机工程学报, 2006, 26(17): 112-116.
[10] 李广超, 朱惠人, 樊慧明. 双向扩张型孔射流角度对气膜冷却特性影响的实验[J]. 航空动力学报, 2009, 24(5): 1000-1005.
[11] 杨成凤, 张靖周. 气膜孔内置扰动条作用下的射流横流流场[J]. 推进技术, 2009, 30(1): 30-33.
[12] 李丽, 彭晓峰, 王补宣. 密度差和速度比对单排孔气膜冷却效率的影响[J]. 航空动力学报, 2007, 22(9): 1430- 1434.
[13] 李佳, 任静, 蒋洪德. 密度比和吹风比对透平静叶气膜冷却特性的影响[J]. 工程热物理学报, 2011, 32(8): 1295- 1298.
[14] 张勃, 吉洪湖, 张宗斌, 等. 中心锥冷却对喷管腔体红外辐射的抑制作用数值分析[J]. 航空动力学报, 2012, 27(3): 560-565.
[15] 张勃, 吉洪湖, 张宗斌, 等. 截锥不同冷却结构对喷管腔体红外抑制特征影响的数值研究[J]. 航空动力学报, 2014, 29(10): 2362-2368.
[16] 李锋, 郭瑞卿, 李龙贤, 等. 整流支板和火焰稳定器的一体化设计加力燃烧室性能的数值模拟[J]. 航空发动机, 2012, 38(5): 6-9.
[17] 张靖周, 王旭, 单勇. 塞锥后体气膜冷却对轴对称塞式喷管红外辐射和气动性能的影响[J]. 航空学报, 2015, 36(8): 2601-2608.
[18] 单勇, 张靖周, 邵万仁, 等. 涡扇发动机排气系统中心锥气膜冷却结构的气动和红外辐射特性实验[J]. 航空动力学报, 2012, 27(1): 9-15.
[19] 孙雨超, 张志学, 李江宁, 等. 一体化加力燃烧室技术特点分析[C]. 中国航空学会2009年学术年会—第十五届燃烧与传热传质学术研讨会, 2009.