|
[1]
|
王矜奉. 固体物理学教程[M]. 山东: 山东大学出版社, 2013: 198-201.
|
|
[2]
|
Imada, M., Fujimori, A. and Tokura, Y. (1998) Metal-Insulator Transitions. Reviews of Modern Physics, 70, 1039. [Google Scholar] [CrossRef]
|
|
[3]
|
Slater, J.C. (1951) Magnetic Effects and the Hartree-Fock Equation. Physical Review, 82, 538. [Google Scholar] [CrossRef]
|
|
[4]
|
Shi, Y.G., Guo, Y.F., Yu, S., Arai, M., Belik, A.A., Sato, A., Yamaura, K., Takayama-Muromachi, E., Tian, H.F., Yang, H.X., Li, J.Q., Varga, T., Mitchell, J.F. and Okamoto, S. (2009) Continuous Metal-Insulator Transition of the Antiferromagnetic Perovskite. Physical Review B, 80, Article ID: 161104. [Google Scholar] [CrossRef]
|
|
[5]
|
Sleight, A.W., Gillson, J.L., Weiher, J.F. and Bindloss, W. (1974) Semiconductor-Metal Transition in Novel Cd2Os2O7. Solid State Communications, 14, 357-359. [Google Scholar] [CrossRef]
|
|
[6]
|
Witczak-Krempa, W., Chen, G., Kim, Y.B. and Balents, L. (2014) Correlated Quantum Phenomena in the Strong Spin-Orbit Regime. Annual Review of Condensed Matter Physics, 5, 57-82. [Google Scholar] [CrossRef]
|
|
[7]
|
Kim, B.J., Ohsumi, H., Komesu, T., Sakai, S., Morita, T., Takagi, H. and Arima, T. (2009) Phase-Sensitive Observation of a Spin-Orbital Mott State in Sr2IrO4. Science, 323, 1329-1332. [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Taylor, A.E., Morrow, R., Fishman, R.S., Calder, S., Kolesnikov, A.I., Lumsden, M.D., Woodward, P.M. and Christianson, A.D. (2016) Spin-Orbit Coupling Controlled Ground State in Sr2ScOsO6. Physical Review B, 93, Article ID: 220408. [Google Scholar] [CrossRef]
|
|
[9]
|
杜永平. 强自旋轨道耦合体系的第一性原理研究[D]: [博士学位论文]. 南京: 南京大学, 2016: 37-44.
|
|
[10]
|
韩涛. 强自旋轨道耦合材料Sr2lrO4和ZrBi2的输运行为研究[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2017.
|
|
[11]
|
金光希. 过渡金属氧化物的电子结构与磁性计算[D]: [博士学位论文]. 合肥: 中国科学技术大学, 2015.
|
|
[12]
|
Perdew, J.P., Burke, K. and Ernzerhof, M. (1996) Generalized Gradient Approximation Made Simple. Physical Review Letters, 77, 3865. [Google Scholar] [CrossRef]
|
|
[13]
|
Kresse, G. and Furthmüller, J. (1996) Efficient Iterative Schemes for ab initio Total-Energy Calculations Using a Plane-Wave Basis Set. Physical Review B, 54, 169. [Google Scholar] [CrossRef]
|
|
[14]
|
Kresse, G. and Joubert, D. (1999) From Ultrasoft Pseudopoten-tials to the Projector Augmented-Wave Method. Physical Review B, 59, 1758. [Google Scholar] [CrossRef]
|
|
[15]
|
Giannozzi, P., et al. (2009) QUANTUM ESPRESSO: A Modu-lar and Open-Source Software Project for Quantum Simulations of Materials. Journal of Physics: Condensed Matter, 21, Article ID: 395502. [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Mandrus, D., Thompson, J.R., Gaal, R., Forro, L., Chakoumakos, J.C., Woods, L.M., Sales, B.C., Fishman, R.S. and Keppens, V. (2001) Continuous Metal-Insulator Transition in the Pyrochlore Cd2Os2O7. Physical Review B, 63, Article ID: 195104. [Google Scholar] [CrossRef]
|
|
[17]
|
Lee, S., Park, J.G., Adroja, D.T., Khomskii, D., Streltsov, S., Mcewen, K.A., Sakai, H., Yoshimure, K., Anisimov, V.I., Mori, D., Kanno, R. and Ibberson, R. (2006) Spin Gap in Tl2Ru2O7 and the Possible Formation of Haldane Chains in Three-Dimensional Crystals. Nature Materials, 5, 471-476. [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Yoshide, M., Takigawa, M., Yamamoto, A. and Takagi, H. (2011) Met-al-Insulator Transition and Magnetic Order in the Pyrochlore Oxide Hg2Ru2O7. Journal of the Physical Society of Japan, 80, Article ID: 034705. [Google Scholar] [CrossRef]
|
|
[19]
|
Yamaura, J., Ohgushi, K., Ohsumi, H., Hasegawa, T., Yamauchi, I., Sugimoto, K., Takeshita, S., Tokuda, A., Takata, M., Udagawa, M., Takigawa, M., Harima, H., Arima, T. and Hiroi, Z. (2012) Tetrahedral Magnetic Order and the Metal-Insulator Transition in the Pyrochlore Lattice of Cd2Os2O7. Physical Review Letters, 108, Article ID: 247205. [Google Scholar] [CrossRef]
|
|
[20]
|
Shinaoka, H., Miyake, T. and Ishibashi, S. (2012) Noncol-linear Magnetism and Spin-Orbit Coupling in 5d Pyrochlore Oxide Cd2Os2O7. Physical Review Letters, 108, Article ID: 247204. [Google Scholar] [CrossRef]
|
|
[21]
|
马晓轩, 胡军. 应力对5d过渡金属氧化物NaOsO3的电子结构的影响的理论研究[J]. 凝聚态物理学进展, 2017, 6(2): 43-50.
|