一维空间中可压缩变指数增长非牛顿流体模型的强解
The Strong Solutions to the Compressible Non-Newtonian Fluids with Variable Exponential Growth in One Dimension
DOI: 10.12677/PM.2020.104046, PDF, HTML, XML, 下载: 614  浏览: 869  国家自然科学基金支持
作者: 苏 敏, 佟丽宁:上海大学理学院数学系,上海
关键词: 变指数增长可压缩非牛顿流体Variable Exponential Growth Compressible Non-Newtonian Fluid
摘要: 本文在一维有界区间上研究了一类可压缩变指数增长的流体模型。此类模型是带有p(x)-Lapalace粘性项的可压缩非牛顿流体模型。我们通过构造逼近解,应用能量估计,克服变指数带来的强非线性性质,得到了非牛顿粘性参数1 < p(x) < 2,且初始密度存在真空的情况下,此类可压缩非牛顿流体模型初边值问题强解的存在唯一性。
Abstract: In this paper, a class of compressible non-Newtonian fluid with variable exponential is studied on one-dimensional bounded interval. This model is a compressible non-Newtonian fluid model with a p(x)-Laplace viscosity term. By constructing an approximate solution and applying energy estimation to overcome the nonlinear property of strong viscous term, we obtain the existence and uniqueness of the strong solution to electroviscous fluid under the condition of the non-Newtonian viscous parameter 1 < p(x) < 2 and vacuum at the initial density.
文章引用:苏敏, 佟丽宁. 一维空间中可压缩变指数增长非牛顿流体模型的强解[J]. 理论数学, 2020, 10(4): 362-373. https://doi.org/10.12677/PM.2020.104046

参考文献

[1] Winslow, W.M. (1949) Induced Fibration of Suspensions. Journal of Applied Physics, 20, 1137-1140.
https://doi.org/10.1063/1.1698285
[2] 黄晓娟, 带有Power-Law型粘性项的可压缩非牛顿流的光滑解[J]. 理论数学, 2019, 9(3): 243-253.
https://doi.org/10.12677/PM.2019.93031
[3] Yang, D. and Tong, L.N. (2017) Existence and Uniqueness of Compressible Non-Newtonian Ellis Fluids for One-Dimension with Vacuum. Communication on Applied Mathematics and Computation, 31, 128-142.
http://qikan.cqvip.com/article/detail.aspx?id=671559827
[4] Yuan, H.J. and Li, H.P. (2012) Existence and Uniqueness of Solutions for a Class of Non-Newtonian Fluids with Vacuum and Damping. Journal of Mathematical Analysis and Applications, 391, 223-239.
https://doi.org/10.1016/j.jmaa.2012.02.015
[5] Rajagopal, K.R. and Růzǐčka, M, (1996) On the Modeling of Eletrorheological Materials. Mechanics Research Communications, 23, 401-407.
https://doi.org/10.1016/0093-6413(96)00038-9
[6] Růzǐčka, M. (2000) Electrorheological Fluids: Modeling and Mathematical Theory. Springer-Verlag, Berlin.
https://doi.org/10.1007/BFb0104029
[7] Diening, L. (2002) Theoretical and Numerical Results for Electrorheological Fluid. University of Freiburg, Germany.
https://www.researchgate.net/publication/29756045
[8] Tersenov, A.S. (2016) The One Dimensional Parabolic p(x)-Laplace Equation. Nonlinear Differential Equations and Applications, 23, 27.
https://doi.org/10.1007/s00030-016-0377-y
[9] Lian, S., Gao, W., Hongjun, Y. and Cao, C. (2012) Existence of Solutions to an Initial Dirichlet Problem of Evolution alp(x)-Laplace Equations. Annales de l'Institut Henri Poincare. Analyse Non Lineaire, 29, 377-399.
https://doi.org/10.1016/j.anihpc.2012.01.001
[10] Winkert, P. and Zacher, R. (2016) Global A Priori Bounds for Weak Solutions to Quasilinear Parabolic Equations with Nonstandard Growth. Nonlinear Analysis: Theory, Methods & Applications, 145, 1-23.
https://doi.org/10.1016/j.na.2016.06.012
[11] Chen. M.T. and Xu. X.J. (2016) Unique Solvability for the Density-Dependent Non-Newtonian Compressible Fluids with Vacuum. Mathematische Nachrichten, 289, 452-470.
https://doi.org/10.1002/mana.201100153
[12] Melikyan. A. (1998) Generalized Characteristics of First Order PDEs. Hamilton Printing, New York.
https://doi.org/10.1007/978-1-4612-1758-9