一种新型LD大面泵浦周期性增益Nd:YVO4板条晶体的理论分析
Theoretical Analysis of the Output of a Diode Face-Pumped Nd:YVO4 Slab Laser with Periodic Gain
DOI: 10.12677/APP.2012.24026, PDF, HTML, 下载: 3,395  浏览: 12,224 
作者: 周 英, 戴 玉, 刘 军, 陈淑芬, 辛建国*:北京理工大学光电学院;陈家斌:北京理工大学自动化学院
关键词: 锁相周期性增益Nd:YVO4板条晶体LD大面泵浦Phase Locking; Periodic Gain; Nd:YVO4 Slab; LD Face-Pumping
摘要: 提出了一种新型的LD大面泵浦周期性增益Nd:YVO4板条晶体的激光器结构,这种结构能产生远场空间压窄的同相锁定极窄单峰输出;分析了周期性增益源的填充因子分别为60%70%80%90%时对远场输出光斑强度分布的影响,填充因子为90%时获得了几乎无旁瓣的远场理想光斑分布;对比了周期性增益源均匀分布与非均匀分布时,远场输出光斑光强分布的差异,结果显示周期性增益源的非均匀分布将导致远场输出光斑的强度分布图形不光滑,且对称性降低。 The theoretical analysis of the output of a diode face-pumped Nd:YVO4 slab laser structure with periodic gain is presented, with which in-phased locked output with highly spatially suppressed single-peak intensity distribution could be obtained. We demonstrate respectively that the intensity of the far field distribution with the filling factor of the periodic gain being 60%, 70%, 80%, 90% and obtain a suppressed far-field single peak with barely side-lobes. We discuss the difference of the far-field single-peak intensity distribution between the uniform periodic gain and non- uniform periodic gain, and get the result that the non-uniform periodic gain distribution makes the far-field single-peak rough and asymmetrical.
文章引用:周英, 戴玉, 刘军, 陈淑芬, 陈家斌, 辛建国. 一种新型LD大面泵浦周期性增益Nd:YVO4板条晶体的理论分析[J]. 应用物理, 2012, 2(4): 153-158. http://dx.doi.org/10.12677/APP.2012.24026

参考文献

[1] W. Koechner. Solid-state laser engineering (5th edition). Berlin: Springer-Verlag, 1999: 710-900.
[2] 闫莹. LD泵浦板条激光器技术研究[D]. 北京理工大学, 2009.
[3] Y. Yan, H. L. Zhang, Y. Liu, et al. Near-diffraction-limited 35.4 W laser-diode end-pumped Nd:YVO4 slab laser operating at 1342 nm. Optics Letter, 2009, 34(14): 2105-2107.
[4] C. Li, H. L. Zhang, X. Liu, et al. Laser-diode end-pumped Nd:YVO4 slab laser under direct pumping into the emitting level. Chinese Physics Letter, 2010, 27(11): 114204-114206.
[5] Z. Ma, D. J. Li, J. C. Gao, et al. Thermal effects of the diode end-pumped Nd:YVO4 slab. Optics Communications, 2007, 275(1): 179-185.
[6] 杨永明. LD端面泵浦固体激光器中晶体的热效应研究[D]. 西安电子科技大学, 2007.
[7] 艾庆康, 常亮, 陈檬等. 808 nm与888 nm抽运Nd:YVO4热效应分析[J]. 中国激光, 2011, 38: 0402001-1.
[8] P. F. Sha, J. G. Xin, L. P. Fang, et al. In-phase coupled single- mode gain waveguide array laser. Optics Letter, 2010, 35(14): 2329-2331.
[9] 沙鹏飞. 射频激励扩散性冷却高光束质量CO2激光器的技术研究[D]. 北京理工大学, 2011.
[10] M. Nixon, N. Davidson and M. Fridman. Passive phase locking of 25 fiber lasers. Optics Letter, 2010, 35(14): 1434-1436.
[11] Y. Kono, M. Takeoka, et al. A coherent all-solid-state laser array using the Talbot effect in a three-mirror cavity. IEEE Journal of Quantum Electronics, 2000, 36(5): 607-613.
[12] K. D. Laakmann, W. H. Steier. Waveguides: Characteristic modes of hollow rectangular dielectric waveguides. Applied Optics, 1976, 15: 1334-1340.
[13] A. Yariv. Optical electronics in modern communication. Beijing: Electronics Industry Press, 2002.
[14] W. Streifer, D. R. Scifres. Phased-array lasers with a uniform, stable supermode. Applied Physics Letters, 1986, 49(22): 1496- 1500.
[15] P. F. Sha, X. J. Guo, Y. Zhou, et al. Output mode characteristics of an in-phase locked gain waveguide array CO2 laser. Chinese Physics B, 2011, 20(8): 084204-084209.