新一代太阳电池的设计思想及研究进展
Design Concepts and Research Progress of New Generation Solar Cells
DOI: 10.12677/app.2012.22009, PDF, HTML, XML, 下载: 4,538  浏览: 15,156  国家自然科学基金支持
作者: 陈建林*:长沙理工大学;陈荐, 何建军, 任延杰, 刘洁, 李秋翔, 刘芳, 邹璐:长沙理工大学,可再生能源电力技术湖南省重点实验室
关键词: 太阳电池量子点多激发中间带热载流子纳米天线
Solar Cells; Multi-Exciton Generation; Intermediate Band; Hot Carrier; Nanoscale Antenna
摘要: 本文综述了太阳电池的发展趋势、研究热点及存在问题。在此基础上,从太阳光谱充分利用和材料设计角度,讨论了聚光型电池、多结叠层电池、中间带电池、上下转换器电池、纳米线(柱)阵列电池、量子点多激发电池、热载流子电池、热光伏电池、纳米天线电池、石墨烯电池等新一代太阳电池的设计思想及研究现状。
Abstract: This paper briefly reviews the prospects, research focus, and problems of solar cells. Based on it, the primary design concepts and research progress of new generation solar cells including sunlight-concentrated, multi-junction, intermediate band, up conversion and down conversion, nanowire or nanopillar array, multi-exciton generation, hot carrier, thermophotovoltaic (TPV), nanoscale antenna, and graphene solar cells, etc., are discussed from the viewpoint of the full utilization of sunlight energy and material design.
文章引用:陈建林, 陈荐, 何建军, 任延杰, 刘洁, 李秋翔, 刘芳, 邹璐. 新一代太阳电池的设计思想及研究进展[J]. 应用物理, 2012, 2(2): 55-60. http://dx.doi.org/10.12677/app.2012.22009

参考文献

[1] 熊绍珍, 朱美芳. 太阳电池基础与应用[M]. 北京: 科学出版社, 2009: 569-613.
[2] B. Parida, S. Iniyan and R. Goic. A review of solar photovoltaic technologies. Renewable and Sustainable Energy Reviews, 2011, 15(3): 1625-1636.
[3] 王永谦. 硅薄膜太阳电池技术及其应用[J]. 上海电力, 2008, 21(2): 115-141.
[4] A. Luque, A. Mart. Ultra-high efficiency solar cells: The path for mass penetration of solar electricity. Electronics Letters, 2008, 44(16): 943-945.
[5] A. Luque, A. Mart and A. J. Nozik. Solar cells based on quantum dots: Multiple exciton generation and intermediate bands. MRS Bulletin, 2007, 32(3): 236-241.
[6] N. Gupta, G. F. Alapatt, R. Podila, R. Singh and K. F. Poole. Prospects of nanostructure-based solar cells for manufacturing future generation of photovoltaic modules. International Journal of Photoenergy, 2009: 1-13.
[7] O. Lupan, V. M. Guerin, I. M. Tiginyanu, et al. Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry, 2010, 211(1): 65-73.
[8] Z. Y. Fan, D. J. Ruebusch, A. A. Rathore, et al. Challenges and prospects of nanopillar-based solar cells. Nano Research, 2009, 2(11): 829-843.
[9] V. I. Klimov. Mechanisms for photogeneration and recombination of multiexcitons in semiconductor nanocrystals: Implications for lasing and solar energy conversion. Journal of Physical Chemistry B, 2006, 10(34): 16827-16845.
[10] G. Conibeer, M. Green, R. Corkish, et al. Silicon nanostructures for third generation photovoltaic solar cells. Thin Solid Films, 2006, 511-512: 654-662.
[11] M. C. Beard, K. P. Knutsen, P. Yu, et al. Multiple exciton generation in colloidal silicon nanocrystals. Nano Letters, 2007, 7(8): 2506- 2512.
[12] M. C. Beard, R. J. Ellingson. Multiple exciton generation in semiconductor nanocrystals: Toward efficient solar energy conversion. Laser and Photonics Reviews, 2008, 2(5): 377-399.
[13] A. J. Nozik. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annual Review of Physical Chemistry, 2001, 52: 193-231.
[14] R. L. Bailey. A proposed new concept for a solar energy convertor. Journal of Engineering Power, 1972, 94: 73-77.
[15] X. M. Li, H. W. Zhu, K. L. Wang, et al. Graphene-on-silicon schottky junction solar cells. Advanced Materials, 2010, 22(25): 2743-2748.
[16] D. Y. Goswami, S. Vijayaraghavan, S. Lu and G. Tamm. New and emerging developments in solar energy. Solar Energy, 2004, 76(1-3): 33-43.