顺电相KTa0.5Nb0.5O3晶体表面性质的第一性原理研究
Properties of Paraelectric Phase KTa0.5Nb0.5O3 Surface Researched by First-Principles
DOI: 10.12677/MP.2012.24015, PDF, HTML, 下载: 3,470  浏览: 12,852 
作者: 孙洪国*, 杨小牛:中国科学院长春应用化学研究所高分子复合材料工程实验室
关键词: 第一性原理钽铌酸钾表面能带态密度First-Principles; KTN; Surface; Band Structure; Density of States
摘要: 运用基于密度泛函理论第一性原理的局域密度近似法对具有铁电压电性能的钽铌酸钾KTa0.5Nb0.5O3晶体(100)表面进行几何结构优化,并进一步计算能带和态密度。计算得到的不同晶向表面介电函数,其它光学性质常数如反射率、折射率、传导率和能量损失函数等都可由介电函数通过计算得到。将计算结果与对应体块材料相应参数进行比较分析。结果显示表面的各种性能与体块材料存在本质的不同,与理论预期一致。
Abstract: Potassium tantalite niobate, KTa0.5Nb0.5O3 (KTN) has paraelectric and ferroelectric properties. The properties of crystal surfaces are studied with first-principles based on the Density Functional Theory (DFT). Geometrical struc-ture optimization, band structure, and density of states (DOS) of KTN (100) surface are calculated and analyzed. The dielectric functions of KTN (100), (110) and (111) surfaces, which can calculate all other optical properties of the mate-rial such as reflectivity, refractive index, conductivity, absorption, and energy loss function, etc. are evaluated. Compare the results with bulk, there are essential difference between interior and surface, which are according with theoretical predictions.
文章引用:孙洪国, 杨小牛. 顺电相KTa0.5Nb0.5O3晶体表面性质的第一性原理研究[J]. 现代物理, 2012, 2(4): 88-93. http://dx.doi.org/10.12677/MP.2012.24015

参考文献

[1] K. Buse, F. Havermeyer, L. Glabasnia, K. Schlomp and E. Krat- zig. Quadratic polarization-optic coefficients of cubic KTa1−xNbxO3 crystals. Optics Communications, 1996, 131(4-6): 339-342.
[2] S. M. Wang, J. H. Zhao, T. S. Zhou, L. H. Wang and A. X. Kuang. Thermal decompo-sition of KTN gel and formation of perovskite structure KTN. Ferro-electrics, 1997, 195(1-4): 5-10.
[3] P. B. Ishai, C. E. M. Oliveira, Y. Ryabov, Y. Feldman and A. J. Agranat. Glass-forming liquid kinetics manifested in a KTN: Cu crystal. Physical Review B, 2004, 70(13): Article ID: 132104.
[4] A. A. Savvinov, I. G. Siny, R. S. Katiyar, M. Pumarol, H. A. Mourad and F. E. Fernandez. Structural characteriza-tion of pulsed laser deposited KTN thin films. Ferroelectric Thin Films VII, 1999, 541: 747-752.
[5] J. Bursik, V. Zelezny and P. Vanek. Preparation of potassium tantalate niobate thin films by chemical solu-tion deposition and their characterization. Journal of European Cerame Society, 2005, 25(12): 2151-2154.
[6] E. Bouziane, M. D. Fontana and M. Ayadi. Phase transition in dilute KTN crystal investigated by Raman scattering measure- ments. Journal of Raman Spectroscopy, 2005, 36(9): 872-878.
[7] X. D. Wang, X. F. Peng and D. M. Zhang. Ferroelectric proper- ties of transparent KTN thin film produced by pulsed laser deposition. Chinese Journal of Chemical Physics, 2005, 18(4): 599-604.
[8] R. E. Cohen, H. Krakauer. Lattice dynamics and origin of ferro- electricity in BaTiO3: Linearized-augment-plane-wave total-en- ergy calculations. Physical Review B, 1990, 42(10): 6416-6423.
[9] M. D. Segall, P. J. D. Lindan, M. J. Probert, C. J. Pickard, P. J. Hasnip , S. J. Clark and M. C. Payne. First-principles simulation: ideas, illustrations and the CASTEP code. Journal of Phys-ics: Condensed Matter, 2002, 14(11): 2717.
[10] X. J. Liu, S. Zhang, P. Chai and J. Meng. Charge ordering in- duced metal semiconductor transition in Ag2BiO3: A first-prin- ciples study. Chemical Physics Letters, 2008, 446(4-6): 281-284.
[11] J. M. Henriques, C. A. Barboza, E. L. Albuquerque, E. W. S. Caetano, V. N. Freire and J. A. P. Costa. First-principles calcula- tions of structural, electronic and optical prop-erties of ortho- rhombic CaPbO3. Journal of Physics D: Applied Phys-ics, 2008, 41(6): Article ID: 065405.
[12] H. Chappell, M. Duer, N. Groom, C. Pickard and P. Bristowe. Probing the surface structure of hydroxyapatite using NMR spectroscopy and first principles calcula-tions. Physical Chemis- try Chemical Physics, 2008, 10(4): 600-606.
[13] F. Zipoli, S. Cereda, M. Ceriotti, M. Bernasconi, L. Miglio and F. Montalenti. First principles study of Ge/Si exchange mecha- nisms at the Si (001) surface. Applied Physics Letters, 2008. 92(19): Article ID: 191908.
[14] E. Finazzi, C. Di Valentin, A. Selloni and G. Pacchioni. First principles study of Nitrogen doping at the anatase TiO2(101) sur- face. Journal of Physical Chemistry C, 2007, 111(26): 9275-9282.
[15] Z. Li, C. V. Ciobanu, J. C. Hu, J. C. Hu, J. P. Palo-mares, J. L. Rodriguez and R. Richards. Experimental and DFT studies of gold nanoparticles supported on MgO (111) nano-sheets and their catalytic activity. Physical Chemistry Chemical Physics, 2011, 13(7): 2582-2589.
[16] S. Ossicini, O. Bisi, E. Degoli, I. Marri, F. Iori, E. Luppi, R. Magri, R. Poli, G. Cantele , D. Ninno, F. Trani, M. Marsili, O. Pulci, V. Olevano, M. Gatti, K. Gaal-Nagy, A. Incze and G. Onida. First-principles study of Silicon nanocrystals: Structural and electronic properties, absorption, emission, and doping. Nano- science and Nanotechnology, 2008, 8(2): 479-492.
[17] X. P. Wang, J. Y. Wang, Y. G. Yu, H. J. Zhang and R. I. Boughton. Growth of cubic KTa1−xNbxO3 crystal by czochralski method. Journal of Crystal Growth, 2006, 293(2): 398-403.
[18] Y. Q. Shen, Z. X. Zhou. Structural, electronic, and optical proper- ties of ferroelectric KTa1/2Nb1/2O3 solid solutions. Journal of Ap- plied Physics, 2008, 103(7): Article ID: 074113.
[19] M. Drdomenico, S. H. Wemple. Oxygen-octahedra ferroelectrics. I. The-ory of electro-optical and nonlinear optical effects. Journal of Applied Physics, 1969, 40(2): 720-734.
[20] K. Y. Zhen, D. M. Zhang, Z. C. Zhong, F. X. Yang and X. Y. Han. Synthesis and optical properties of tetragonal KTa0.6Nb0.4O3 nano- particles. Applied Surface Science, 2009, 256(5): 1317-1321.